Cargando…
Whole Exome Sequencing in Individuals with Idiopathic Clubfoot Reveals a Recurrent Filamin B (FLNB) Deletion
BACKGROUND: Clubfoot, a congenital deformity that presents as a rigid, inward turning of the foot, affects approximately 1 in 1000 infants and occurs as an isolated birth defect in 80% of patients. Despite its high level of heritability, few causative genes have been identified, and mutations in kno...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Wolters Kluwer
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8747482/ https://www.ncbi.nlm.nih.gov/pubmed/34491919 http://dx.doi.org/10.1097/CORR.0000000000001957 |
_version_ | 1784630847012339712 |
---|---|
author | Quiggle, Ashley Charng, Wu-Lin Antunes, Lilian Nikolov, Momchil Bledsoe, Xavier Hecht, Jacqueline T. Dobbs, Matthew B. Gurnett, Christina A. |
author_facet | Quiggle, Ashley Charng, Wu-Lin Antunes, Lilian Nikolov, Momchil Bledsoe, Xavier Hecht, Jacqueline T. Dobbs, Matthew B. Gurnett, Christina A. |
author_sort | Quiggle, Ashley |
collection | PubMed |
description | BACKGROUND: Clubfoot, a congenital deformity that presents as a rigid, inward turning of the foot, affects approximately 1 in 1000 infants and occurs as an isolated birth defect in 80% of patients. Despite its high level of heritability, few causative genes have been identified, and mutations in known genes are only responsible for a small portion of clubfoot heritability. QUESTIONS/PURPOSES: (1) Are any rare gene variants enriched (that is, shared) in unrelated patients with isolated clubfoot? (2) Are there other rare variants in the identified gene (Filamin B) in these patients with clubfoot? METHODS: Whole-exome sequence data were generated from a discovery cohort of 183 unrelated probands with clubfoot and 2492 controls. Variants were filtered with minor allele frequency < 0.02 to identify rare variants as well as small insertions and deletions (indels) resulting in missense variants, nonsense or premature truncation, or in-frame deletions. A candidate deletion was then genotyped in another cohort of 974 unrelated patients with clubfoot (a replication cohort). Other rare variants in the candidate gene were also investigated. A segregation analysis was performed in multigenerational families of individuals with clubfoot to see if the genotypes segregate with phenotypes. Single-variant association analysis was performed using the Fisher two-tailed exact test (exact p values are presented to give an indication of the magnitude of the association). RESULTS: There were no recurrent variants in the known genes causing clubfoot in this study. A three-base pair in-frame codon deletion of Filamin B (FLNB) (p.E1792del, rs1470699812) was identified in 1.6% (3 of 183) of probands with clubfoot in the discovery cohort compared with 0% of controls (0 of 2492) (odds ratio infinity (inf) [95% CI 5.64 to inf]; p = 3.18 x 10(-5)) and 0.0016% of gnomAD controls (2 of 125,709) (OR 1.01 x 10(3) [95% CI 117.42 to 1.64 x 10(4)]; p = 3.13 x 10(-8)). By screening a replication cohort (n = 974 patients), we found two probands with the identical FLNB deletion. In total, the deletion was identified in 0.43% (5 of 1157) of probands with clubfoot compared with 0% of controls and 0.0016% of gnomAD controls (OR 268.5 [95% CI 43.68 to 2.88 x 10(3)]; p = 1.43 x 10(-9)). The recurrent FLNB p.E1792del variant segregated with clubfoot, with incomplete penetrance in two families. Affected individuals were more likely to be male and have bilateral clubfoot. Although most patients had isolated clubfoot, features consistent with Larsen syndrome, including upper extremity abnormalities such as elbow and thumb hypermobility and wide, flat thumbs, were noted in affected members of one family. We identified 19 additional rare FLNB missense variants located throughout the gene in patients with clubfoot. One of these missense variants, FLNB p.G2397D, exhibited incomplete penetrance in one family. CONCLUSION: A recurrent FLNB E1792 deletion was identified in 0.43% of 1157 isolated patients with clubfoot. Given the absence of any recurrent variants in our discovery phase (n = 183) for any of the known genes causing clubfoot, our findings support that novel and rare missense variants in FLNB in patients with clubfoot, although rare, may be among the most commonly known genetic causes of clubfoot. Patients with FLNB variants often have isolated clubfoot, but they and their family members may be at an increased risk of having additional clinical features consistent with Larsen syndrome. CLINICAL RELEVANCE: Identification of FLNB variants may be useful for determining clubfoot recurrence risk and comorbidities. |
format | Online Article Text |
id | pubmed-8747482 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Wolters Kluwer |
record_format | MEDLINE/PubMed |
spelling | pubmed-87474822023-02-01 Whole Exome Sequencing in Individuals with Idiopathic Clubfoot Reveals a Recurrent Filamin B (FLNB) Deletion Quiggle, Ashley Charng, Wu-Lin Antunes, Lilian Nikolov, Momchil Bledsoe, Xavier Hecht, Jacqueline T. Dobbs, Matthew B. Gurnett, Christina A. Clin Orthop Relat Res Basic Research BACKGROUND: Clubfoot, a congenital deformity that presents as a rigid, inward turning of the foot, affects approximately 1 in 1000 infants and occurs as an isolated birth defect in 80% of patients. Despite its high level of heritability, few causative genes have been identified, and mutations in known genes are only responsible for a small portion of clubfoot heritability. QUESTIONS/PURPOSES: (1) Are any rare gene variants enriched (that is, shared) in unrelated patients with isolated clubfoot? (2) Are there other rare variants in the identified gene (Filamin B) in these patients with clubfoot? METHODS: Whole-exome sequence data were generated from a discovery cohort of 183 unrelated probands with clubfoot and 2492 controls. Variants were filtered with minor allele frequency < 0.02 to identify rare variants as well as small insertions and deletions (indels) resulting in missense variants, nonsense or premature truncation, or in-frame deletions. A candidate deletion was then genotyped in another cohort of 974 unrelated patients with clubfoot (a replication cohort). Other rare variants in the candidate gene were also investigated. A segregation analysis was performed in multigenerational families of individuals with clubfoot to see if the genotypes segregate with phenotypes. Single-variant association analysis was performed using the Fisher two-tailed exact test (exact p values are presented to give an indication of the magnitude of the association). RESULTS: There were no recurrent variants in the known genes causing clubfoot in this study. A three-base pair in-frame codon deletion of Filamin B (FLNB) (p.E1792del, rs1470699812) was identified in 1.6% (3 of 183) of probands with clubfoot in the discovery cohort compared with 0% of controls (0 of 2492) (odds ratio infinity (inf) [95% CI 5.64 to inf]; p = 3.18 x 10(-5)) and 0.0016% of gnomAD controls (2 of 125,709) (OR 1.01 x 10(3) [95% CI 117.42 to 1.64 x 10(4)]; p = 3.13 x 10(-8)). By screening a replication cohort (n = 974 patients), we found two probands with the identical FLNB deletion. In total, the deletion was identified in 0.43% (5 of 1157) of probands with clubfoot compared with 0% of controls and 0.0016% of gnomAD controls (OR 268.5 [95% CI 43.68 to 2.88 x 10(3)]; p = 1.43 x 10(-9)). The recurrent FLNB p.E1792del variant segregated with clubfoot, with incomplete penetrance in two families. Affected individuals were more likely to be male and have bilateral clubfoot. Although most patients had isolated clubfoot, features consistent with Larsen syndrome, including upper extremity abnormalities such as elbow and thumb hypermobility and wide, flat thumbs, were noted in affected members of one family. We identified 19 additional rare FLNB missense variants located throughout the gene in patients with clubfoot. One of these missense variants, FLNB p.G2397D, exhibited incomplete penetrance in one family. CONCLUSION: A recurrent FLNB E1792 deletion was identified in 0.43% of 1157 isolated patients with clubfoot. Given the absence of any recurrent variants in our discovery phase (n = 183) for any of the known genes causing clubfoot, our findings support that novel and rare missense variants in FLNB in patients with clubfoot, although rare, may be among the most commonly known genetic causes of clubfoot. Patients with FLNB variants often have isolated clubfoot, but they and their family members may be at an increased risk of having additional clinical features consistent with Larsen syndrome. CLINICAL RELEVANCE: Identification of FLNB variants may be useful for determining clubfoot recurrence risk and comorbidities. Wolters Kluwer 2022-02 2021-09-06 /pmc/articles/PMC8747482/ /pubmed/34491919 http://dx.doi.org/10.1097/CORR.0000000000001957 Text en Copyright © 2021 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the Association of Bone and Joint Surgeons https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) , where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal. |
spellingShingle | Basic Research Quiggle, Ashley Charng, Wu-Lin Antunes, Lilian Nikolov, Momchil Bledsoe, Xavier Hecht, Jacqueline T. Dobbs, Matthew B. Gurnett, Christina A. Whole Exome Sequencing in Individuals with Idiopathic Clubfoot Reveals a Recurrent Filamin B (FLNB) Deletion |
title | Whole Exome Sequencing in Individuals with Idiopathic Clubfoot Reveals a Recurrent Filamin B (FLNB) Deletion |
title_full | Whole Exome Sequencing in Individuals with Idiopathic Clubfoot Reveals a Recurrent Filamin B (FLNB) Deletion |
title_fullStr | Whole Exome Sequencing in Individuals with Idiopathic Clubfoot Reveals a Recurrent Filamin B (FLNB) Deletion |
title_full_unstemmed | Whole Exome Sequencing in Individuals with Idiopathic Clubfoot Reveals a Recurrent Filamin B (FLNB) Deletion |
title_short | Whole Exome Sequencing in Individuals with Idiopathic Clubfoot Reveals a Recurrent Filamin B (FLNB) Deletion |
title_sort | whole exome sequencing in individuals with idiopathic clubfoot reveals a recurrent filamin b (flnb) deletion |
topic | Basic Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8747482/ https://www.ncbi.nlm.nih.gov/pubmed/34491919 http://dx.doi.org/10.1097/CORR.0000000000001957 |
work_keys_str_mv | AT quiggleashley wholeexomesequencinginindividualswithidiopathicclubfootrevealsarecurrentfilaminbflnbdeletion AT charngwulin wholeexomesequencinginindividualswithidiopathicclubfootrevealsarecurrentfilaminbflnbdeletion AT antuneslilian wholeexomesequencinginindividualswithidiopathicclubfootrevealsarecurrentfilaminbflnbdeletion AT nikolovmomchil wholeexomesequencinginindividualswithidiopathicclubfootrevealsarecurrentfilaminbflnbdeletion AT bledsoexavier wholeexomesequencinginindividualswithidiopathicclubfootrevealsarecurrentfilaminbflnbdeletion AT hechtjacquelinet wholeexomesequencinginindividualswithidiopathicclubfootrevealsarecurrentfilaminbflnbdeletion AT dobbsmatthewb wholeexomesequencinginindividualswithidiopathicclubfootrevealsarecurrentfilaminbflnbdeletion AT gurnettchristinaa wholeexomesequencinginindividualswithidiopathicclubfootrevealsarecurrentfilaminbflnbdeletion |