Cargando…
Comparative Analysis of Machine Learning Methods for Predicting Robotized Incremental Metal Sheet Forming Force
This paper proposes a method for extracting information from the parameters of a single point incremental forming (SPIF) process. The measurement of the forming force using this technology helps to avoid failures, identify optimal processes, and to implement routine control. Since forming forces are...
Autores principales: | Ostasevicius, Vytautas, Paleviciute, Ieva, Paulauskaite-Taraseviciene, Agne, Jurenas, Vytautas, Eidukynas, Darius, Kizauskiene, Laura |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8747513/ https://www.ncbi.nlm.nih.gov/pubmed/35009560 http://dx.doi.org/10.3390/s22010018 |
Ejemplares similares
-
Investigation of the Robotized Incremental Metal-Sheet Forming Process with Ultrasonic Excitation
por: Ostasevicius, Vytautas, et al.
Publicado: (2022) -
Investigation of Advanced Robotized Polymer Sheet Incremental Forming Process
por: Ostasevicius, Vytautas, et al.
Publicado: (2021) -
A Machine Learning Approach for Wear Monitoring of End Mill by Self-Powering Wireless Sensor Nodes
por: Ostasevicius, Vytautas, et al.
Publicado: (2021) -
Development of a Low-Frequency Piezoelectric Ultrasonic Transducer for Biological Tissue Sonication
por: Ostasevicius, Vytautas, et al.
Publicado: (2023) -
Peculiarities of the Third Natural Frequency Vibrations of a Cantilever for the Improvement of Energy Harvesting
por: Ostasevicius, Vytautas, et al.
Publicado: (2015)