Cargando…
Attention Autoencoder for Generative Latent Representational Learning in Anomaly Detection
Today, accurate and automated abnormality diagnosis and identification have become of paramount importance as they are involved in many critical and life-saving scenarios. To accomplish such frontiers, we propose three artificial intelligence models through the application of deep learning algorithm...
Autores principales: | Oluwasanmi, Ariyo, Aftab, Muhammad Umar, Baagyere, Edward, Qin, Zhiguang, Ahmad, Muhammad, Mazzara, Manuel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8747546/ https://www.ncbi.nlm.nih.gov/pubmed/35009666 http://dx.doi.org/10.3390/s22010123 |
Ejemplares similares
-
Multi-Head Spatiotemporal Attention Graph Convolutional Network for Traffic Prediction
por: Oluwasanmi, Ariyo, et al.
Publicado: (2023) -
Secure and dynamic access control for the Internet of Things (IoT) based traffic system
por: Aftab, Muhammad Umar, et al.
Publicado: (2021) -
MAMA Net: Multi-Scale Attention Memory Autoencoder Network for Anomaly Detection
Publicado: (2020) -
Autoencoders for anomaly detection at LHCb
por: Radziunas Salinas, Yago
Publicado: (2022) -
Anomaly Detection With Conditional Variational Autoencoders
por: Pol, Adrian Alan, et al.
Publicado: (2020)