Cargando…
Preparation and Characterization of a Novel Activated Carbon@Polyindole Composite for the Effective Removal of Ionic Dye from Water
The present study is aimed at the synthesis and exploring the efficiency of a novel activated carbon incorporated polyindole (AC@PIN) composite for adsorptive removal of Malachite Green (MG) dye from aqueous solution. An AC@PIN hybrid material was prepared by in situ chemical oxidative polymerizatio...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8747591/ https://www.ncbi.nlm.nih.gov/pubmed/35012027 http://dx.doi.org/10.3390/polym14010003 |
_version_ | 1784630867569672192 |
---|---|
author | Begum, Bushra Ijaz, Saba Khattak, Rozina Qazi, Raina Aman Khan, Muhammad Sufaid Mahmoud, Khaled H. |
author_facet | Begum, Bushra Ijaz, Saba Khattak, Rozina Qazi, Raina Aman Khan, Muhammad Sufaid Mahmoud, Khaled H. |
author_sort | Begum, Bushra |
collection | PubMed |
description | The present study is aimed at the synthesis and exploring the efficiency of a novel activated carbon incorporated polyindole (AC@PIN) composite for adsorptive removal of Malachite Green (MG) dye from aqueous solution. An AC@PIN hybrid material was prepared by in situ chemical oxidative polymerization. The physico-chemical characteristics of the AC@PIN composite were assessed using Fourier-transform infrared spectrometer, X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy, ultraviolet visible spectroscopy, and determination of point of zero charge (pH(PZC)). A series of adsorption studies was conducted to evaluate the influence of operational parameters such as pH, contact time, initial dye concentration, AC@PIN dosage, and temperature on dye adsorption behavior of developed composite. A maximum dye removal percentage (97.3%) was achieved at the pH = 10, AC@PIN dosage = 6.0 mg, initial dye concentration 150 mg L(−1), and temperature = 20 °C. The kinetic studies demonstrated that the adsorption of MG on AC@PIN followed pseudo-second-order model (R(2) ≥ 0.99). Meanwhile, Langmuir isotherm model was founded to be the best isotherm model to describe the adsorption process. Finally, the recyclability test revealed that the composite exhibits good recycle efficiency and is stable after 5 cycles. The obtained results suggest that AC@PIN composite could be a potential candidate for the removal of MG from wastewater. |
format | Online Article Text |
id | pubmed-8747591 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-87475912022-01-11 Preparation and Characterization of a Novel Activated Carbon@Polyindole Composite for the Effective Removal of Ionic Dye from Water Begum, Bushra Ijaz, Saba Khattak, Rozina Qazi, Raina Aman Khan, Muhammad Sufaid Mahmoud, Khaled H. Polymers (Basel) Article The present study is aimed at the synthesis and exploring the efficiency of a novel activated carbon incorporated polyindole (AC@PIN) composite for adsorptive removal of Malachite Green (MG) dye from aqueous solution. An AC@PIN hybrid material was prepared by in situ chemical oxidative polymerization. The physico-chemical characteristics of the AC@PIN composite were assessed using Fourier-transform infrared spectrometer, X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy, ultraviolet visible spectroscopy, and determination of point of zero charge (pH(PZC)). A series of adsorption studies was conducted to evaluate the influence of operational parameters such as pH, contact time, initial dye concentration, AC@PIN dosage, and temperature on dye adsorption behavior of developed composite. A maximum dye removal percentage (97.3%) was achieved at the pH = 10, AC@PIN dosage = 6.0 mg, initial dye concentration 150 mg L(−1), and temperature = 20 °C. The kinetic studies demonstrated that the adsorption of MG on AC@PIN followed pseudo-second-order model (R(2) ≥ 0.99). Meanwhile, Langmuir isotherm model was founded to be the best isotherm model to describe the adsorption process. Finally, the recyclability test revealed that the composite exhibits good recycle efficiency and is stable after 5 cycles. The obtained results suggest that AC@PIN composite could be a potential candidate for the removal of MG from wastewater. MDPI 2021-12-21 /pmc/articles/PMC8747591/ /pubmed/35012027 http://dx.doi.org/10.3390/polym14010003 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Begum, Bushra Ijaz, Saba Khattak, Rozina Qazi, Raina Aman Khan, Muhammad Sufaid Mahmoud, Khaled H. Preparation and Characterization of a Novel Activated Carbon@Polyindole Composite for the Effective Removal of Ionic Dye from Water |
title | Preparation and Characterization of a Novel Activated Carbon@Polyindole Composite for the Effective Removal of Ionic Dye from Water |
title_full | Preparation and Characterization of a Novel Activated Carbon@Polyindole Composite for the Effective Removal of Ionic Dye from Water |
title_fullStr | Preparation and Characterization of a Novel Activated Carbon@Polyindole Composite for the Effective Removal of Ionic Dye from Water |
title_full_unstemmed | Preparation and Characterization of a Novel Activated Carbon@Polyindole Composite for the Effective Removal of Ionic Dye from Water |
title_short | Preparation and Characterization of a Novel Activated Carbon@Polyindole Composite for the Effective Removal of Ionic Dye from Water |
title_sort | preparation and characterization of a novel activated carbon@polyindole composite for the effective removal of ionic dye from water |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8747591/ https://www.ncbi.nlm.nih.gov/pubmed/35012027 http://dx.doi.org/10.3390/polym14010003 |
work_keys_str_mv | AT begumbushra preparationandcharacterizationofanovelactivatedcarbonpolyindolecompositefortheeffectiveremovalofionicdyefromwater AT ijazsaba preparationandcharacterizationofanovelactivatedcarbonpolyindolecompositefortheeffectiveremovalofionicdyefromwater AT khattakrozina preparationandcharacterizationofanovelactivatedcarbonpolyindolecompositefortheeffectiveremovalofionicdyefromwater AT qazirainaaman preparationandcharacterizationofanovelactivatedcarbonpolyindolecompositefortheeffectiveremovalofionicdyefromwater AT khanmuhammadsufaid preparationandcharacterizationofanovelactivatedcarbonpolyindolecompositefortheeffectiveremovalofionicdyefromwater AT mahmoudkhaledh preparationandcharacterizationofanovelactivatedcarbonpolyindolecompositefortheeffectiveremovalofionicdyefromwater |