Cargando…

Enhanced Performance of Cyclopentadithiophene-Based Donor-Acceptor-Type Semiconducting Copolymer Transistors Obtained by a Wire Bar-Coating Method

Herein, we report the fabrications of high-performance polymer field-effect transistors (PFETs) with wire bar-coated semiconducting polymer film as an active layer. For an active semiconducting material of the PFETs, we employed cyclopentadithiophene-alt-benzothiadiazole (CDT-BTZ) that is a D-A-type...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Doyeon, Yoon, Minho, Lee, Jiyoul
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8747689/
https://www.ncbi.nlm.nih.gov/pubmed/35012024
http://dx.doi.org/10.3390/polym14010002
Descripción
Sumario:Herein, we report the fabrications of high-performance polymer field-effect transistors (PFETs) with wire bar-coated semiconducting polymer film as an active layer. For an active semiconducting material of the PFETs, we employed cyclopentadithiophene-alt-benzothiadiazole (CDT-BTZ) that is a D-A-type-conjugated copolymer consisting of a repeated electron-donating unit and an electron-accepting unit, and the other two CDT-based D-A-type copolymer analogues are cyclopentadithiophene-alt-fluorinated-benzothiadiazole (CDT-FBTZ) and cyclopentadithiophene-alt-thiadiazolopyridine (CDT-PTZ). The linear field-effect mobility values obtained from the transfer curve of the PFETs fabricated with the spin-coating were 0.04 cm(2)/Vs, 0.16 cm(2)/Vs, and 0.31 cm(2)/Vs, for CDT-BTZ, CDT-FBTZ, and CDT-PTZ, respectively, while the mobility values measured from the PFETs with the wire bar-coated CDT-BTZ film, CDT-FBTZ film, and CDT-PTZ film were 0.16 cm(2)/Vs, 0.28 cm(2)/Vs, and 0.95 cm(2)/Vs, respectively, which are about 2 to 4 times higher values than those of the PFETs with spin-coated films. These results revealed that the aligned molecular chain is beneficial for the D-A-type semiconducting copolymer even though the charge transport in the D-A-type semiconducting copolymer is known to be less critical to the degree of disorder in film.