Cargando…
A Spatial Autoregressive Quantile Regression to Examine Quantile Effects of Regional Factors on Crash Rates
Spatial autocorrelation and skewed distribution are the most frequent issues in crash rate modelling analysis. Previous studies commonly focus on the spatial autocorrelation between adjacent regions or the relationships between crash rate and potentially risky factors across different quantiles of c...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8747712/ https://www.ncbi.nlm.nih.gov/pubmed/35009547 http://dx.doi.org/10.3390/s22010005 |
_version_ | 1784630894139539456 |
---|---|
author | Yu, Tianjian Gao, Fan Liu, Xinyuan Tang, Jinjun |
author_facet | Yu, Tianjian Gao, Fan Liu, Xinyuan Tang, Jinjun |
author_sort | Yu, Tianjian |
collection | PubMed |
description | Spatial autocorrelation and skewed distribution are the most frequent issues in crash rate modelling analysis. Previous studies commonly focus on the spatial autocorrelation between adjacent regions or the relationships between crash rate and potentially risky factors across different quantiles of crash rate distribution, but rarely both. To overcome the research gap, this study utilizes the spatial autoregressive quantile (SARQ) model to estimate how contributing factors influence the total and fatal-plus-injury crash rates and how modelling relationships change across the distribution of crash rates considering the effects of spatial autocorrelation. Three types of explanatory variables, i.e., demographic, traffic networks and volumes, and land-use patterns, were considered. Using data collected in New York City from 2017 to 2019, the results show that: (1) the SARQ model outperforms the traditional quantile regression model in prediction and fitting performance; (2) the effects of variables vary with the quantiles, mainly classifying three types: increasing, unchanged, and U-shaped; (3) at the high tail of crash rate distribution, the effects commonly have sudden increases/decrease. The findings are expected to provide strategies for reducing the crash rate and improving road traffic safety. |
format | Online Article Text |
id | pubmed-8747712 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-87477122022-01-11 A Spatial Autoregressive Quantile Regression to Examine Quantile Effects of Regional Factors on Crash Rates Yu, Tianjian Gao, Fan Liu, Xinyuan Tang, Jinjun Sensors (Basel) Article Spatial autocorrelation and skewed distribution are the most frequent issues in crash rate modelling analysis. Previous studies commonly focus on the spatial autocorrelation between adjacent regions or the relationships between crash rate and potentially risky factors across different quantiles of crash rate distribution, but rarely both. To overcome the research gap, this study utilizes the spatial autoregressive quantile (SARQ) model to estimate how contributing factors influence the total and fatal-plus-injury crash rates and how modelling relationships change across the distribution of crash rates considering the effects of spatial autocorrelation. Three types of explanatory variables, i.e., demographic, traffic networks and volumes, and land-use patterns, were considered. Using data collected in New York City from 2017 to 2019, the results show that: (1) the SARQ model outperforms the traditional quantile regression model in prediction and fitting performance; (2) the effects of variables vary with the quantiles, mainly classifying three types: increasing, unchanged, and U-shaped; (3) at the high tail of crash rate distribution, the effects commonly have sudden increases/decrease. The findings are expected to provide strategies for reducing the crash rate and improving road traffic safety. MDPI 2021-12-21 /pmc/articles/PMC8747712/ /pubmed/35009547 http://dx.doi.org/10.3390/s22010005 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Yu, Tianjian Gao, Fan Liu, Xinyuan Tang, Jinjun A Spatial Autoregressive Quantile Regression to Examine Quantile Effects of Regional Factors on Crash Rates |
title | A Spatial Autoregressive Quantile Regression to Examine Quantile Effects of Regional Factors on Crash Rates |
title_full | A Spatial Autoregressive Quantile Regression to Examine Quantile Effects of Regional Factors on Crash Rates |
title_fullStr | A Spatial Autoregressive Quantile Regression to Examine Quantile Effects of Regional Factors on Crash Rates |
title_full_unstemmed | A Spatial Autoregressive Quantile Regression to Examine Quantile Effects of Regional Factors on Crash Rates |
title_short | A Spatial Autoregressive Quantile Regression to Examine Quantile Effects of Regional Factors on Crash Rates |
title_sort | spatial autoregressive quantile regression to examine quantile effects of regional factors on crash rates |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8747712/ https://www.ncbi.nlm.nih.gov/pubmed/35009547 http://dx.doi.org/10.3390/s22010005 |
work_keys_str_mv | AT yutianjian aspatialautoregressivequantileregressiontoexaminequantileeffectsofregionalfactorsoncrashrates AT gaofan aspatialautoregressivequantileregressiontoexaminequantileeffectsofregionalfactorsoncrashrates AT liuxinyuan aspatialautoregressivequantileregressiontoexaminequantileeffectsofregionalfactorsoncrashrates AT tangjinjun aspatialautoregressivequantileregressiontoexaminequantileeffectsofregionalfactorsoncrashrates AT yutianjian spatialautoregressivequantileregressiontoexaminequantileeffectsofregionalfactorsoncrashrates AT gaofan spatialautoregressivequantileregressiontoexaminequantileeffectsofregionalfactorsoncrashrates AT liuxinyuan spatialautoregressivequantileregressiontoexaminequantileeffectsofregionalfactorsoncrashrates AT tangjinjun spatialautoregressivequantileregressiontoexaminequantileeffectsofregionalfactorsoncrashrates |