Cargando…
Additive Effect on the Structure of PEDOT:PSS Dispersions and Its Correlation with the Structure and Morphology of Thin Films
We reported on the interaction between poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) and high-boiling-point additives in PEDOT:PSS aqueous dispersions and in the final polymer films with the aim of stablishing correlations between the structure of both inks and solid thin films....
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8747737/ https://www.ncbi.nlm.nih.gov/pubmed/35012162 http://dx.doi.org/10.3390/polym14010141 |
Sumario: | We reported on the interaction between poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) and high-boiling-point additives in PEDOT:PSS aqueous dispersions and in the final polymer films with the aim of stablishing correlations between the structure of both inks and solid thin films. By Small-Angle X-ray Scattering (SAXS) using synchrotron radiation, it was found that the structural changes of dispersions of PEDOT:PSS with high-boiling-point additives can be explained as a two-step mechanism depending on the additive concentration. A compaction of PEDOT:PSS grains was observed at low concentrations while a swelling of the grains together with a phase segregation between PEDOT and PSS segments was evidenced at larger concentrations. Thin films’ morphology and structure were investigated by atomic force microscopy (AFM) and synchrotron Grazing Incidence Wide-Angle X-ray Scattering (GIWAXS) respectively. Our two-step model provides an explanation for the small and sharp domains of PEDOT:PSS thin films observed for low-additive concentrations (first step) and larger domains and roughness found for higher-additive concentrations (second step). A reduction of the ratio of PSS in PEDOT:PSS thin films upon the presence of additives was also observed. This can be related to a thinning of the PSS shells of PEDOT:PSS grains in the dispersion. The results discussed in this work provide the basis for a controlled tuning of PEDOT:PSS thin films structure and the subsequent electrical properties. |
---|