Cargando…

Critical parameters for design and development of multivalent nanoconstructs: recent trends

A century ago, the groundbreaking concept of the magic bullet was given by Paul Ehrlich. Since then, this concept has been extensively explored in various forms to date. The concept of multivalency is among such advancements of the magic bullet concept. Biologically, the concept of multivalency play...

Descripción completa

Detalles Bibliográficos
Autores principales: Bakshi, Avijit Kumar, Haider, Tanweer, Tiwari, Rahul, Soni, Vandana
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8747862/
https://www.ncbi.nlm.nih.gov/pubmed/35013982
http://dx.doi.org/10.1007/s13346-021-01103-4
Descripción
Sumario:A century ago, the groundbreaking concept of the magic bullet was given by Paul Ehrlich. Since then, this concept has been extensively explored in various forms to date. The concept of multivalency is among such advancements of the magic bullet concept. Biologically, the concept of multivalency plays a critical role in significantly huge numbers of biochemical interactions. This concept is the sole reason behind the higher affinity of biological molecules like viruses to more selectively target the host cell surface receptors. Multivalent nanoconstructs are a promising approach for drug delivery by the active targeting principle. Designing and developing effective and target-specific multivalent drug delivery nanoconstructs, on the other hand, remain a challenge. The underlying reason for this is a lack of understanding of the crucial interactions between ligands and cell surface receptors, as well as the design of nanoconstructs. This review highlights the need for a better theoretical understanding of the multivalent effect of what happens to the receptor–ligand complex after it has been established. Furthermore, the critical parameters for designing and developing robust multivalent systems have been emphasized. We have also discussed current advances in the design and development of multivalent nanoconstructs for drug delivery. We believe that a thorough knowledge of theoretical concepts and experimental methodologies may transform a brilliant idea into clinical translation. GRAPHICAL ABSTRACT: [Image: see text]