Cargando…

Preventive control strategy on second wave of Covid-19 pandemic model incorporating lock-down effect

This study presents an optimal control strategy through a mathematical model of the Covid-19 outbreak without lock-down. The pandemic model analyses the lock-down effect without control strategy based on the current scenario of second wave data to control the rapid spread of the virus. The pandemic...

Descripción completa

Detalles Bibliográficos
Autores principales: Basu, Sanjoy, Prem Kumar, R., Santra, P.K., Mahapatra, G.S., Elsadany, A.A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria University. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8747945/
http://dx.doi.org/10.1016/j.aej.2021.12.066
Descripción
Sumario:This study presents an optimal control strategy through a mathematical model of the Covid-19 outbreak without lock-down. The pandemic model analyses the lock-down effect without control strategy based on the current scenario of second wave data to control the rapid spread of the virus. The pandemic model has been discussed with respect to the basic reproduction number and stability analysis of disease-free and endemic equilibrium. A new optimal control problem with treatment is framed to minimize the vulnerable situation of the second wave. This system is applied to study the effects of vaccines and treatment controls. Numerical solutions and the graphical presentation of the results predict the fate of India’s second wave situation on account of the control strategy. Lastly, a comparative study with control and without control has been analysed for the exposed phase, infective phase, and recovery phase to understand the effectiveness of the controls. This model is used to estimate the total number of infected and active cases, deaths, and recoveries in order to control the disease using this system and studying the effects of vaccines and treatment controls.