Cargando…
EGF domain peptide of Developmentally regulated endothelial locus1 facilitates gene expression of extracellularly applied plasmid DNA
BACKGROUND: The successful development of messenger RNA vaccines for SARS-CoV-2 opened up venues for clinical nucleotide-based vaccinations. For development of DNA vaccines, we tested whether the EGF domain peptide of Developmentally regulated endothelial locus1 (E3 peptide) enhances uptake of extra...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
International Alliance for Biological Standardization. Published by Elsevier Ltd.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8748178/ https://www.ncbi.nlm.nih.gov/pubmed/35027253 http://dx.doi.org/10.1016/j.biologicals.2022.01.002 |
Sumario: | BACKGROUND: The successful development of messenger RNA vaccines for SARS-CoV-2 opened up venues for clinical nucleotide-based vaccinations. For development of DNA vaccines, we tested whether the EGF domain peptide of Developmentally regulated endothelial locus1 (E3 peptide) enhances uptake of extracellularly applied plasmid DNA. METHODS: DNA plasmid encoding lacZ or GFP was applied with a conditioned culture medium containing E3 peptide to cell lines in vitro or mouse soleus muscles in vivo, respectively. After 48 h incubation, gene expression was examined by β-galactosidase (β-gal) assay and fluorescent microscope, respectively. RESULTS: Application of E3 peptide-containing medium to cultured cell lines induced intense β-gal activity in a dose-dependent manner. Intra-gastrocnemius injection of E3 peptide-containing medium to mouse soleus muscle succeeded in the induction of GFP fluorescence in many cells around the injection site. CONCLUSIONS: The administration of E3 peptide facilitates transmembrane uptake of extracellular DNA plasmid which induces sufficient extrinsic gene expression. |
---|