Cargando…

Intracellular bound chlorophyll residues identify 1 Gyr-old fossils as eukaryotic algae

The acquisition of photosynthesis is a fundamental step in the evolution of eukaryotes. However, few phototrophic organisms are unambiguously recognized in the Precambrian record. The in situ detection of metabolic byproducts in individual microfossils is the key for the direct identification of the...

Descripción completa

Detalles Bibliográficos
Autores principales: Sforna, Marie Catherine, Loron, Corentin C., Demoulin, Catherine F., François, Camille, Cornet, Yohan, Lara, Yannick J., Grolimund, Daniel, Ferreira Sanchez, Dario, Medjoubi, Kadda, Somogyi, Andrea, Addad, Ahmed, Fadel, Alexandre, Compère, Philippe, Baudet, Daniel, Brocks, Jochen J., Javaux, Emmanuelle J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8748435/
https://www.ncbi.nlm.nih.gov/pubmed/35013306
http://dx.doi.org/10.1038/s41467-021-27810-7
_version_ 1784631011953344512
author Sforna, Marie Catherine
Loron, Corentin C.
Demoulin, Catherine F.
François, Camille
Cornet, Yohan
Lara, Yannick J.
Grolimund, Daniel
Ferreira Sanchez, Dario
Medjoubi, Kadda
Somogyi, Andrea
Addad, Ahmed
Fadel, Alexandre
Compère, Philippe
Baudet, Daniel
Brocks, Jochen J.
Javaux, Emmanuelle J.
author_facet Sforna, Marie Catherine
Loron, Corentin C.
Demoulin, Catherine F.
François, Camille
Cornet, Yohan
Lara, Yannick J.
Grolimund, Daniel
Ferreira Sanchez, Dario
Medjoubi, Kadda
Somogyi, Andrea
Addad, Ahmed
Fadel, Alexandre
Compère, Philippe
Baudet, Daniel
Brocks, Jochen J.
Javaux, Emmanuelle J.
author_sort Sforna, Marie Catherine
collection PubMed
description The acquisition of photosynthesis is a fundamental step in the evolution of eukaryotes. However, few phototrophic organisms are unambiguously recognized in the Precambrian record. The in situ detection of metabolic byproducts in individual microfossils is the key for the direct identification of their metabolisms. Here, we report a new integrative methodology using synchrotron-based X-ray fluorescence and absorption. We evidence bound nickel-geoporphyrins moieties in low-grade metamorphic rocks, preserved in situ within cells of a ~1 Gyr-old multicellular eukaryote, Arctacellularia tetragonala. We identify these moieties as chlorophyll derivatives, indicating that A. tetragonala was a phototrophic eukaryote, one of the first unambiguous algae. This new approach, applicable to overmature rocks, creates a strong new proxy to understand the evolution of phototrophy and diversification of early ecosystems.
format Online
Article
Text
id pubmed-8748435
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-87484352022-01-20 Intracellular bound chlorophyll residues identify 1 Gyr-old fossils as eukaryotic algae Sforna, Marie Catherine Loron, Corentin C. Demoulin, Catherine F. François, Camille Cornet, Yohan Lara, Yannick J. Grolimund, Daniel Ferreira Sanchez, Dario Medjoubi, Kadda Somogyi, Andrea Addad, Ahmed Fadel, Alexandre Compère, Philippe Baudet, Daniel Brocks, Jochen J. Javaux, Emmanuelle J. Nat Commun Article The acquisition of photosynthesis is a fundamental step in the evolution of eukaryotes. However, few phototrophic organisms are unambiguously recognized in the Precambrian record. The in situ detection of metabolic byproducts in individual microfossils is the key for the direct identification of their metabolisms. Here, we report a new integrative methodology using synchrotron-based X-ray fluorescence and absorption. We evidence bound nickel-geoporphyrins moieties in low-grade metamorphic rocks, preserved in situ within cells of a ~1 Gyr-old multicellular eukaryote, Arctacellularia tetragonala. We identify these moieties as chlorophyll derivatives, indicating that A. tetragonala was a phototrophic eukaryote, one of the first unambiguous algae. This new approach, applicable to overmature rocks, creates a strong new proxy to understand the evolution of phototrophy and diversification of early ecosystems. Nature Publishing Group UK 2022-01-10 /pmc/articles/PMC8748435/ /pubmed/35013306 http://dx.doi.org/10.1038/s41467-021-27810-7 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Sforna, Marie Catherine
Loron, Corentin C.
Demoulin, Catherine F.
François, Camille
Cornet, Yohan
Lara, Yannick J.
Grolimund, Daniel
Ferreira Sanchez, Dario
Medjoubi, Kadda
Somogyi, Andrea
Addad, Ahmed
Fadel, Alexandre
Compère, Philippe
Baudet, Daniel
Brocks, Jochen J.
Javaux, Emmanuelle J.
Intracellular bound chlorophyll residues identify 1 Gyr-old fossils as eukaryotic algae
title Intracellular bound chlorophyll residues identify 1 Gyr-old fossils as eukaryotic algae
title_full Intracellular bound chlorophyll residues identify 1 Gyr-old fossils as eukaryotic algae
title_fullStr Intracellular bound chlorophyll residues identify 1 Gyr-old fossils as eukaryotic algae
title_full_unstemmed Intracellular bound chlorophyll residues identify 1 Gyr-old fossils as eukaryotic algae
title_short Intracellular bound chlorophyll residues identify 1 Gyr-old fossils as eukaryotic algae
title_sort intracellular bound chlorophyll residues identify 1 gyr-old fossils as eukaryotic algae
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8748435/
https://www.ncbi.nlm.nih.gov/pubmed/35013306
http://dx.doi.org/10.1038/s41467-021-27810-7
work_keys_str_mv AT sfornamariecatherine intracellularboundchlorophyllresiduesidentify1gyroldfossilsaseukaryoticalgae
AT loroncorentinc intracellularboundchlorophyllresiduesidentify1gyroldfossilsaseukaryoticalgae
AT demoulincatherinef intracellularboundchlorophyllresiduesidentify1gyroldfossilsaseukaryoticalgae
AT francoiscamille intracellularboundchlorophyllresiduesidentify1gyroldfossilsaseukaryoticalgae
AT cornetyohan intracellularboundchlorophyllresiduesidentify1gyroldfossilsaseukaryoticalgae
AT larayannickj intracellularboundchlorophyllresiduesidentify1gyroldfossilsaseukaryoticalgae
AT grolimunddaniel intracellularboundchlorophyllresiduesidentify1gyroldfossilsaseukaryoticalgae
AT ferreirasanchezdario intracellularboundchlorophyllresiduesidentify1gyroldfossilsaseukaryoticalgae
AT medjoubikadda intracellularboundchlorophyllresiduesidentify1gyroldfossilsaseukaryoticalgae
AT somogyiandrea intracellularboundchlorophyllresiduesidentify1gyroldfossilsaseukaryoticalgae
AT addadahmed intracellularboundchlorophyllresiduesidentify1gyroldfossilsaseukaryoticalgae
AT fadelalexandre intracellularboundchlorophyllresiduesidentify1gyroldfossilsaseukaryoticalgae
AT comperephilippe intracellularboundchlorophyllresiduesidentify1gyroldfossilsaseukaryoticalgae
AT baudetdaniel intracellularboundchlorophyllresiduesidentify1gyroldfossilsaseukaryoticalgae
AT brocksjochenj intracellularboundchlorophyllresiduesidentify1gyroldfossilsaseukaryoticalgae
AT javauxemmanuellej intracellularboundchlorophyllresiduesidentify1gyroldfossilsaseukaryoticalgae