Cargando…
Stabilization of 1D solitons by fractional derivatives in systems with quintic nonlinearity
We study theoretically the properties of a soliton solution of the fractional Schrödinger equation with quintic nonlinearity. Under “fractional” we understand the Schrödinger equation, where ordinary Laplacian (second spatial derivative in 1D) is substituted by its fractional counterpart with Lévy i...
Autores principales: | Stephanovich, V. A., Olchawa, W. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8748463/ https://www.ncbi.nlm.nih.gov/pubmed/35013507 http://dx.doi.org/10.1038/s41598-021-04292-7 |
Ejemplares similares
-
1D solitons in cubic-quintic fractional nonlinear Schrödinger model
por: Stephanovich, V. A., et al.
Publicado: (2022) -
Quintic non-polynomial spline for time-fractional nonlinear Schrödinger equation
por: Ding, Qinxu, et al.
Publicado: (2020) -
Bright-Dark and Multi Solitons Solutions of (3 + 1)-Dimensional Cubic-Quintic Complex Ginzburg–Landau Dynamical Equation with Applications and Stability
por: Yue, Chen, et al.
Publicado: (2020) -
Asymmetric wave transmission through one dimensional lattices with cubic-quintic nonlinearity
por: Wasay, Muhammad Abdul
Publicado: (2018) -
Enhanced nonreciprocal transmission through a saturable cubic-quintic nonlinear dimer defect
por: Wasay, Muhammad Abdul, et al.
Publicado: (2019)