Cargando…
The effect of Q.Clear reconstruction on quantification and spatial resolution of 18F-FDG PET in simultaneous PET/MR
BACKGROUND: Q.Clear is a block sequential regularized expectation maximization penalized-likelihood reconstruction algorithm for Positron Emission Tomography (PET). It has shown high potential in improving image reconstruction quality and quantification accuracy in PET/CT system. However, the evalua...
Autores principales: | Tian, Defeng, Yang, Hongwei, Li, Yan, Cui, Bixiao, Lu, Jie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8748582/ https://www.ncbi.nlm.nih.gov/pubmed/35006411 http://dx.doi.org/10.1186/s40658-021-00428-w |
Ejemplares similares
-
Optimization of Q.Clear reconstruction for dynamic (18)F PET imaging
por: Lysvik, Elisabeth Kirkeby, et al.
Publicado: (2023) -
Reconstructed spatial resolution and contrast recovery with Bayesian penalized likelihood reconstruction (Q.Clear) for FDG-PET compared to time-of-flight (TOF) with point spread function (PSF)
por: Rogasch, Julian M., et al.
Publicado: (2020) -
Impact of the Q.Clear reconstruction algorithm on the interpretation of PET/CT images in patients with lymphoma
por: Wyrzykowski, Michał, et al.
Publicado: (2020) -
Comparison of Image Quality and Quantification Parameters between Q.Clear and OSEM Reconstruction Methods on FDG-PET/CT Images in Patients with Metastatic Breast Cancer
por: Naghavi-Behzad, Mohammad, et al.
Publicado: (2023) -
Performance evaluation of the Q.Clear reconstruction framework versus conventional reconstruction algorithms for quantitative brain PET-MR studies
por: Ribeiro, Daniela, et al.
Publicado: (2021)