Cargando…
Machine learning for emerging infectious disease field responses
Emerging infectious diseases (EIDs), including the latest COVID-19 pandemic, have emerged and raised global public health crises in recent decades. Without existing protective immunity, an EID may spread rapidly and cause mass casualties in a very short time. Therefore, it is imperative to identify...
Autores principales: | Chiu, Han-Yi Robert, Hwang, Chun-Kai, Chen, Shey-Ying, Shih, Fuh-Yuan, Han, Hsieh-Cheng, King, Chwan-Chuen, Gilbert, John Reuben, Fang, Cheng-Chung, Oyang, Yen-Jen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8748708/ https://www.ncbi.nlm.nih.gov/pubmed/35013370 http://dx.doi.org/10.1038/s41598-021-03687-w |
Ejemplares similares
-
National retrospective cohort study to identify age-specific fatality risks of comorbidities among hospitalised patients with influenza-like illness in Taiwan
por: Weng, Ting-Chia, et al.
Publicado: (2019) -
Comparing machine learning with case-control models to identify confirmed dengue cases
por: Ho, Tzong-Shiann, et al.
Publicado: (2020) -
Surveillance and Epidemiology of Infectious Diseases using Spatial and Temporal Lustering Methods
por: Chan, Ta-Chien, et al.
Publicado: (2010) -
Effect of de novo transcriptome assembly on transcript quantification
por: Hsieh, Ping-Han, et al.
Publicado: (2019) -
Author Correction: Effect of de novo transcriptome assembly on transcript quantification
por: Hsieh, Ping-Han, et al.
Publicado: (2019)