Cargando…
Deep robust residual network for super-resolution of 2D fetal brain MRI
Spatial resolution is a key factor of quantitatively evaluating the quality of magnetic resonance imagery (MRI). Super-resolution (SR) approaches can improve its spatial resolution by reconstructing high-resolution (HR) images from low-resolution (LR) ones to meet clinical and scientific requirement...
Autores principales: | Song, Liyao, Wang, Quan, Liu, Ting, Li, Haiwei, Fan, Jiancun, Yang, Jian, Hu, Bingliang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8748749/ https://www.ncbi.nlm.nih.gov/pubmed/35013383 http://dx.doi.org/10.1038/s41598-021-03979-1 |
Ejemplares similares
-
An automated framework for localization, segmentation and super-resolution reconstruction of fetal brain MRI
por: Ebner, Michael, et al.
Publicado: (2020) -
Super‐resolution of brain tumor MRI images based on deep learning
por: Zhou, Zhiyi, et al.
Publicado: (2022) -
Light Field Image Super-Resolution Using Deep Residual Networks on Lenslet Images
por: Salem, Ahmed, et al.
Publicado: (2023) -
Arbitrary Scale Super-Resolution for Brain MRI Images
por: Tan, Chuan, et al.
Publicado: (2020) -
DL-MRI: A Unified Framework of Deep Learning-Based MRI Super Resolution
por: Liu, Huanyu, et al.
Publicado: (2021)