Cargando…

RSL1D1 promotes the progression of colorectal cancer through RAN-mediated autophagy suppression

RSL1D1 (ribosomal L1 domain containing 1), a member of the universal ribosomal protein uL1 family, was suggested to be a new candidate target for colorectal cancer (CRC). However, the role of RSL1D1 in cancer, including CRC, remains largely elusive. Here, we demonstrated that RSL1D1 expression was s...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Xunhua, Chen, Jianxiong, Long, Xiaoli, Lan, Jiawen, Liu, Xiaoting, Zhou, Miao, Zhang, Sijing, Zhou, Jun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8748816/
https://www.ncbi.nlm.nih.gov/pubmed/35013134
http://dx.doi.org/10.1038/s41419-021-04492-z
Descripción
Sumario:RSL1D1 (ribosomal L1 domain containing 1), a member of the universal ribosomal protein uL1 family, was suggested to be a new candidate target for colorectal cancer (CRC). However, the role of RSL1D1 in cancer, including CRC, remains largely elusive. Here, we demonstrated that RSL1D1 expression was significantly elevated in tumors from CRC patients and that high expression of RSL1D1 was correlated with poorer survival of CRC patients. Functionally, RSL1D1 promoted the proliferation, invasion, and metastasis of CRC cells by suppressing autophagy. Interestingly, RSL1D1 interacted with RAN and inhibited its deacetylation by competitively binding with Sirt7. By affecting the acetylation of RAN, RSL1D1 inhibited the accumulation of nuclear STAT3 and the STAT3-regulated autophagic program. Taken together, our study uncovered the key role of the RSL1D1/RAN/STAT3 regulatory axis in autophagy and tumor progression in CRC, providing a new candidate target for CRC treatment.