Cargando…
Mini-batch optimization enables training of ODE models on large-scale datasets
Quantitative dynamic models are widely used to study cellular signal processing. A critical step in modelling is the estimation of unknown model parameters from experimental data. As model sizes and datasets are steadily growing, established parameter optimization approaches for mechanistic models b...
Autores principales: | Stapor, Paul, Schmiester, Leonard, Wierling, Christoph, Merkt, Simon, Pathirana, Dilan, Lange, Bodo M. H., Weindl, Daniel, Hasenauer, Jan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8748893/ https://www.ncbi.nlm.nih.gov/pubmed/35013141 http://dx.doi.org/10.1038/s41467-021-27374-6 |
Ejemplares similares
-
Efficient computation of adjoint sensitivities at steady-state in ODE models of biochemical reaction networks
por: Lakrisenko, Polina, et al.
Publicado: (2023) -
Benchmarking of numerical integration methods for ODE models of biological systems
por: Städter, Philipp, et al.
Publicado: (2021) -
Parameterization of mechanistic models from qualitative data using an efficient optimal scaling approach
por: Schmiester, Leonard, et al.
Publicado: (2020) -
pyPESTO: a modular and scalable tool for parameter estimation for dynamic models
por: Schälte, Yannik, et al.
Publicado: (2023) -
Optimization and profile calculation of ODE models using second order adjoint sensitivity analysis
por: Stapor, Paul, et al.
Publicado: (2018)