Cargando…
Ensemble learning from ensemble docking: revisiting the optimum ensemble size problem
Despite considerable advances obtained by applying machine learning approaches in protein–ligand affinity predictions, the incorporation of receptor flexibility has remained an important bottleneck. While ensemble docking has been used widely as a solution to this problem, the optimum choice of rece...
Autores principales: | Mohammadi, Sara, Narimani, Zahra, Ashouri, Mitra, Firouzi, Rohoullah, Karimi‐Jafari, Mohammad Hossein |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8748946/ https://www.ncbi.nlm.nih.gov/pubmed/35013496 http://dx.doi.org/10.1038/s41598-021-04448-5 |
Ejemplares similares
-
Identification of Catechins’ Binding Sites in Monomeric Aβ(42) through Ensemble Docking and MD Simulations
por: Firouzi, Rohoullah, et al.
Publicado: (2023) -
Ensemble docking revisited
por: Korb, Oliver, et al.
Publicado: (2010) -
RosettaLigandEnsemble: A Small-Molecule Ensemble-Driven
Docking Approach
por: Fu, Darwin Yu, et al.
Publicado: (2018) -
Margin-Based Pareto Ensemble Pruning: An Ensemble Pruning Algorithm That Learns to Search Optimized Ensembles
por: Hu, Ruihan, et al.
Publicado: (2019) -
Denoising Single Images by Feature Ensemble Revisited
por: Fahim, Masud An Nur Islam, et al.
Publicado: (2022)