Cargando…
High frequency accuracy and loss data of random neural networks trained on image datasets
Neural Networks (NNs) are increasingly used across scientific domains to extract knowledge from experimental or computational data. An NN is composed of natural or artificial neurons that serve as simple processing units and are interconnected into a model architecture; it acquires knowledge from th...
Autores principales: | Rorabaugh, Ariel Keller, Caíno-Lores, Silvina, Johnston, Travis, Taufer, Michela |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8749157/ https://www.ncbi.nlm.nih.gov/pubmed/35036484 http://dx.doi.org/10.1016/j.dib.2021.107780 |
Ejemplares similares
-
Fluorescence microscopy datasets for training deep neural networks
por: Hagen, Guy M, et al.
Publicado: (2021) -
Regular sports services: Dataset of demographic, frequency and service level agreement
por: Pinheiro, Paulo, et al.
Publicado: (2021) -
Whales from space dataset, an annotated satellite image dataset of whales for training machine learning models
por: Cubaynes, Hannah C., et al.
Publicado: (2022) -
Oscillation effect dataset on the measurement accuracy of load-cell sensor applied to the weigh basket
por: Arianti, Nunik Destria, et al.
Publicado: (2021) -
An annotated fluorescence image dataset for training nuclear segmentation methods
por: Kromp, Florian, et al.
Publicado: (2020)