Cargando…
Modulation of intrinsic inhibitory checkpoints using nano‐carriers to unleash NK cell activity
Natural killer (NK) cells provide a powerful weapon mediating immune defense against viral infections, tumor growth, and metastatic spread. NK cells demonstrate great potential for cancer immunotherapy; they can rapidly and directly kill cancer cells in the absence of MHC‐dependent antigen presentat...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8749471/ https://www.ncbi.nlm.nih.gov/pubmed/34725941 http://dx.doi.org/10.15252/emmm.202114073 |
Sumario: | Natural killer (NK) cells provide a powerful weapon mediating immune defense against viral infections, tumor growth, and metastatic spread. NK cells demonstrate great potential for cancer immunotherapy; they can rapidly and directly kill cancer cells in the absence of MHC‐dependent antigen presentation and can initiate a robust immune response in the tumor microenvironment (TME). Nevertheless, current NK cell‐based immunotherapies have several drawbacks, such as the requirement for ex vivo expansion of modified NK cells, and low transduction efficiency. Furthermore, to date, no clinical trial has demonstrated a significant benefit for NK‐based therapies in patients with advanced solid tumors, mainly due to the suppressive TME. To overcome current obstacles in NK cell‐based immunotherapies, we describe here a non‐viral lipid nanoparticle‐based delivery system that encapsulates small interfering RNAs (siRNAs) to gene silence the key intrinsic inhibitory NK cell molecules, SHP‐1, Cbl‐b, and c‐Cbl. The nanoparticles (NPs) target NK cells in vivo, silence inhibitory checkpoint signaling molecules, and unleash NK cell activity to eliminate tumors. Thus, the novel NP‐based system developed here may serve as a powerful tool for future NK cell‐based therapeutic approaches. |
---|