Cargando…
Deep Learning Approach at the Edge to Detect Iron Ore Type
There is a constant risk of iron ore collapsing during its transfer between processing stages in beneficiation plants. Existing instrumentation is not only expensive but also complex and challenging to maintain. In this research, we propose using edge artificial intelligence for early detection of l...
Autores principales: | Klippel, Emerson, Bianchi, Andrea Gomes Campos, Delabrida, Saul, Silva, Mateus Coelho, Garrocho, Charles Tim Batista, Moreira, Vinicius da Silva, Oliveira, Ricardo Augusto Rabelo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8749548/ https://www.ncbi.nlm.nih.gov/pubmed/35009712 http://dx.doi.org/10.3390/s22010169 |
Ejemplares similares
-
Using Mobile Edge AI to Detect and Map Diseases in Citrus Orchards
por: da Silva, Jonathan C. F., et al.
Publicado: (2023) -
Wearable Edge AI Applications for Ecological Environments
por: Silva, Mateus C., et al.
Publicado: (2021) -
Influence of iron ore properties on dioxin emissions during iron ore sintering
por: Zhou, Xiaoteng, et al.
Publicado: (2022) -
Accelerating microbial iron cycling promotes re‐cementation of surface crusts in iron ore regions
por: Gagen, Emma J., et al.
Publicado: (2020) -
IoT Registration and Authentication in Smart City Applications with Blockchain
por: Ferreira, Célio Márcio Soares, et al.
Publicado: (2021)