Cargando…
Electromyogram-Based Classification of Hand and Finger Gestures Using Artificial Neural Networks
Electromyogram (EMG) signals have been increasingly used for hand and finger gesture recognition. However, most studies have focused on the wrist and whole-hand gestures and not on individual finger (IF) gestures, which are considered more challenging. In this study, we develop EMG-based hand/finger...
Autores principales: | Lee, Kyung Hyun, Min, Ji Young, Byun, Sangwon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8749583/ https://www.ncbi.nlm.nih.gov/pubmed/35009768 http://dx.doi.org/10.3390/s22010225 |
Ejemplares similares
-
Multi-day dataset of forearm and wrist electromyogram for hand gesture recognition and biometrics
por: Pradhan, Ashirbad, et al.
Publicado: (2022) -
Upper-Limb Electromyogram Classification of Reaching-to-Grasping Tasks Based on Convolutional Neural Networks for Control of a Prosthetic Hand
por: Kim, Keun-Tae, et al.
Publicado: (2021) -
Classification of 41 Hand and Wrist Movements via Surface Electromyogram Using Deep Neural Network
por: Sri-iesaranusorn, Panyawut, et al.
Publicado: (2021) -
A database of high-density surface electromyogram signals comprising 65 isometric hand gestures
por: Malešević, Nebojša, et al.
Publicado: (2021) -
Static hand gesture recognition based on hierarchical decision and classification of finger features
por: Li, Yunfeng, et al.
Publicado: (2022)