Cargando…
Time-Domain Joint Training Strategies of Speech Enhancement and Intent Classification Neural Models
Robustness against background noise and reverberation is essential for many real-world speech-based applications. One way to achieve this robustness is to employ a speech enhancement front-end that, independently of the back-end, removes the environmental perturbations from the target speech signal....
Autores principales: | Ali, Mohamed Nabih, Falavigna, Daniele, Brutti, Alessio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8749591/ https://www.ncbi.nlm.nih.gov/pubmed/35009917 http://dx.doi.org/10.3390/s22010374 |
Ejemplares similares
-
Neural bases of social communicative intentions in speech
por: Hellbernd, Nele, et al.
Publicado: (2018) -
Music training enhances the automatic neural processing of foreign speech sounds
por: Intartaglia, Bastien, et al.
Publicado: (2017) -
Pre-Trained Joint Model for Intent Classification and Slot Filling with Semantic Feature Fusion
por: Chen, Yan, et al.
Publicado: (2023) -
Speech Enhancement in the STFT Domain
por: Benesty, Jacob, et al.
Publicado: (2012) -
The classification of movement intention through machine learning models: the identification of significant time-domain EMG features
por: Mohd Khairuddin, Ismail, et al.
Publicado: (2021)