Cargando…
Fatigue Crack Evaluation with the Guided Wave–Convolutional Neural Network Ensemble and Differential Wavelet Spectrogram
On-line fatigue crack evaluation is crucial for ensuring the structural safety and reducing the maintenance costs of safety-critical systems. Among structural health monitoring (SHM), guided wave (GW)-based SHM has been deemed as one of the most promising techniques. However, the traditional damage...
Autores principales: | Chen, Jian, Wu, Wenyang, Ren, Yuanqiang, Yuan, Shenfang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8749601/ https://www.ncbi.nlm.nih.gov/pubmed/35009843 http://dx.doi.org/10.3390/s22010307 |
Ejemplares similares
-
Guided Wave-Convolutional Neural Network Based Fatigue Crack Diagnosis of Aircraft Structures †
por: Xu, Liang, et al.
Publicado: (2019) -
EEG driving fatigue detection based on log-Mel spectrogram and convolutional recurrent neural networks
por: Gao, Dongrui, et al.
Publicado: (2023) -
Cough Recognition Based on Mel-Spectrogram and Convolutional Neural Network
por: Zhou, Quan, et al.
Publicado: (2021) -
Radar-Spectrogram-Based UAV Classification Using Convolutional Neural Networks
por: Park, Dongsuk, et al.
Publicado: (2020) -
Guided Wave Characteristic Research and Probabilistic Crack Evaluation in Complex Multi-Layer Stringer Splice Joint Structure
por: Chen, Jian, et al.
Publicado: (2023)