Cargando…
Power Allocation and Energy Cooperation for UAV-Enabled MmWave Networks: A Multi-Agent Deep Reinforcement Learning Approach
Unmanned Aerial Vehicle (UAV)-assisted cellular networks over the millimeter-wave (mmWave) frequency band can meet the requirements of a high data rate and flexible coverage in next-generation communication networks. However, higher propagation loss and the use of a large number of antennas in mmWav...
Autor principal: | Domingo, Mari Carmen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8749623/ https://www.ncbi.nlm.nih.gov/pubmed/35009812 http://dx.doi.org/10.3390/s22010270 |
Ejemplares similares
-
Energy-Efficient Optimization for Energy-Harvesting-Enabled mmWave-UAV Heterogeneous Networks
por: Zhang, Jinxi, et al.
Publicado: (2022) -
A Geometry-Based Beamforming Channel Model for UAV mmWave Communications
por: Mao, Kai, et al.
Publicado: (2020) -
Beam Allocation and Power Optimization for Energy-Efficiency in Multiuser mmWave Massive MIMO System
por: Maimaiti, Saidiwaerdi, et al.
Publicado: (2021) -
Deep Reinforcement Learning-Based Coordinated Beamforming for mmWave Massive MIMO Vehicular Networks
por: Tarafder, Pulok, et al.
Publicado: (2023) -
Beamforming Design for Cooperative Intelligent Reflecting Surface-Assisted mmWave Communication
por: Qian, Yuyan, et al.
Publicado: (2022)