Cargando…
On the Performance of Generative Adversarial Network by Limiting Mode Collapse for Malware Detection Systems
Generative adversarial network (GAN) has been regarded as a promising solution to many machine learning problems, and it comprises of a generator and discriminator, determining patterns and anomalies in the input data. However, GANs have several common failure modes. Typically, a mode collapse occur...
Autores principales: | Murray, Acklyn, Rawat, Danda B. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8749644/ https://www.ncbi.nlm.nih.gov/pubmed/35009810 http://dx.doi.org/10.3390/s22010264 |
Ejemplares similares
-
Generative adversarial networks and image-based malware classification
por: Nguyen, Huy, et al.
Publicado: (2023) -
Adversarial Samples on Android Malware Detection Systems for IoT Systems
por: Liu, Xiaolei, et al.
Publicado: (2019) -
Malware detection
por: Nandal, Priyanka
Publicado: (2017) -
DeepDetectNet vs RLAttackNet: An adversarial method to improve deep learning-based static malware detection model
por: Fang, Yong, et al.
Publicado: (2020) -
Investigating the Performance of Generative Adversarial Networks for Prostate Tissue Detection and Segmentation
por: Cem Birbiri, Ufuk, et al.
Publicado: (2020)