Cargando…
An Aggregated Mutual Information Based Feature Selection with Machine Learning Methods for Enhancing IoT Botnet Attack Detection
Due to the wide availability and usage of connected devices in Internet of Things (IoT) networks, the number of attacks on these networks is continually increasing. A particularly serious and dangerous type of attack in the IoT environment is the botnet attack, where the attackers can control the Io...
Autores principales: | Al-Sarem, Mohammed, Saeed, Faisal, Alkhammash, Eman H., Alghamdi, Norah Saleh |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8749651/ https://www.ncbi.nlm.nih.gov/pubmed/35009725 http://dx.doi.org/10.3390/s22010185 |
Ejemplares similares
-
Botnet Attack Detection in IoT Using Machine Learning
por: Alissa, Khalid, et al.
Publicado: (2022) -
Machine Learning-Based IoT-Botnet Attack Detection with Sequential Architecture †
por: Soe, Yan Naung, et al.
Publicado: (2020) -
Review of Botnet Attack Detection in SDN-Enabled IoT Using Machine Learning
por: Negera, Worku Gachena, et al.
Publicado: (2022) -
Classification of botnet attacks in IoT smart factory using honeypot combined with machine learning
por: Lee, Seungjin, et al.
Publicado: (2021) -
IoT Botnet Attack Detection Based on Optimized Extreme Gradient Boosting and Feature Selection
por: Alqahtani, Mnahi, et al.
Publicado: (2020)