Cargando…
Low-Rank and Sparse Matrix Recovery for Hyperspectral Image Reconstruction Using Bayesian Learning
In order to reduce the amount of hyperspectral imaging (HSI) data transmission required through hyperspectral remote sensing (HRS), we propose a structured low-rank and joint-sparse (L&S) data compression and reconstruction method. The proposed method exploits spatial and spectral correlations i...
Autores principales: | Zhang, Yanbin, Huang, Long-Ting, Li, Yangqing, Zhang, Kai, Yin, Changchuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8749654/ https://www.ncbi.nlm.nih.gov/pubmed/35009885 http://dx.doi.org/10.3390/s22010343 |
Ejemplares similares
-
Low-Rank and Sparse Recovery of Human Gait Data
por: Kamali, Kaveh, et al.
Publicado: (2020) -
A Distributed Parallel Algorithm Based on Low-Rank and Sparse Representation for Anomaly Detection in Hyperspectral Images
por: Zhang, Yi, et al.
Publicado: (2018) -
Low-Rank and Sparse Matrix Decomposition for Genetic
Interaction Data
por: Wang, Yishu, et al.
Publicado: (2015) -
Sparse/Low Rank Constrained Reconstruction for Dynamic PET Imaging
por: Yu, Xingjian, et al.
Publicado: (2015) -
Low-Rank and Sparse Decomposition Model for Accelerating Dynamic MRI Reconstruction
por: Chen, Junbo, et al.
Publicado: (2017)