Cargando…
Machine Learning Methods for Automatic Silent Speech Recognition Using a Wearable Graphene Strain Gauge Sensor
Silent speech recognition is the ability to recognise intended speech without audio information. Useful applications can be found in situations where sound waves are not produced or cannot be heard. Examples include speakers with physical voice impairments or environments in which audio transference...
Autores principales: | Ravenscroft, Dafydd, Prattis, Ioannis, Kandukuri, Tharun, Samad, Yarjan Abdul, Mallia, Giorgio, Occhipinti, Luigi G. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8749657/ https://www.ncbi.nlm.nih.gov/pubmed/35009845 http://dx.doi.org/10.3390/s22010299 |
Ejemplares similares
-
Unencapsulated and washable two-dimensional material electronic-textile for NO(2) sensing in ambient air
por: Oluwasanya, Pelumi W., et al.
Publicado: (2022) -
Ultrathin crystalline-silicon-based strain gauges with deep learning algorithms for silent speech interfaces
por: Kim, Taemin, et al.
Publicado: (2022) -
Techniques for noise robustness in automatic speech recognition
por: Virtanen, Tuomas, et al.
Publicado: (2013) -
Assessing the accuracy of automatic speech recognition for psychotherapy
por: Miner, Adam S., et al.
Publicado: (2020) -
Highly Electrically Conductive Nanocomposites Based on PolymerInfused Graphene
Sponges
por: Li, Yuanqing, et al.
Publicado: (2014)