Cargando…

The Effect of Yeast and Roughage Concentrate Ratio on Ruminal pH and Protozoal Population in Thai Native Beef Cattle

SIMPLE SUMMARY: As a result of the recent ban on antibiotics in feed, animal probiotics are becoming increasingly popular. Yeast is extensively used as both a probiotic and prebiotic in the gastrointestinal tracts of ruminants. The purpose of this study is to determine how adding yeast (Saccharomyce...

Descripción completa

Detalles Bibliográficos
Autores principales: Phesatcha, Kampanat, Phesatcha, Burarat, Wanapat, Metha, Cherdthong, Anusorn
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8749668/
https://www.ncbi.nlm.nih.gov/pubmed/35011162
http://dx.doi.org/10.3390/ani12010053
Descripción
Sumario:SIMPLE SUMMARY: As a result of the recent ban on antibiotics in feed, animal probiotics are becoming increasingly popular. Yeast is extensively used as both a probiotic and prebiotic in the gastrointestinal tracts of ruminants. The purpose of this study is to determine how adding yeast (Saccharomyces cerevisiae) to the diet and changing the roughage-to-concentrate ratio (R:C ratio) affects nutrient consumption, rumen fermentation, microbial protein synthesis, and protozoal population in Thai native beef cattle. The roughage source was urea–calcium-hydroxide-treated rice straw. The findings suggest that supplementing with a R:C ratio of 40:60 and a LY of 4 g/hd/d boosted nutrient digestibility, volatile fatty acid (VFA) production, propionic acid (C(3)) in particular, and microbial protein synthesis while lowering protozoal population. ABSTRACT: The objective of this research is to investigate the effect of yeast (Saccharomyces cerevisiae) adding and roughage-to-concentrate ratio (R:C ratio) on nutrients utilization, rumen fermentation efficiency, microbial protein synthesis, and protozoal population in Thai native beef cattle. Four Thai native beef cattle, weighing an average of 120 ± 10 kg live weight, were randomly assigned to four dietary treatments using a 2 × 2 factorial arrangement in a 4 × 4 Latin square design. Factor A was the level of roughage-to-concentrate ratio (R:C ratio) at 60:40 and 40:60; factor B was the levels of live yeast (LY) supplementation at 0 and 4 g/hd/d; urea–calcium-hydroxide-treated rice straw were used as a roughage source. Findings revealed that total intake and digestibility of dry matter (DM), organic matter (OM), and crude protein (CP) were increased (p < 0.05) by both factors, being greater for steers fed a R:C ratio of 40:60 supplemented with 4 g LY/hd/d. Ruminal ammonia nitrogen, total volatile fatty acid (VFA), and propionate (C(3)) were increased (p < 0.05) at the R:C ratio of 40:60 with LY supplementation at 4 g/hd/d, whereas rumen acetate (C(2)) and the C(2) to C(3) ratio were decreased (p < 0.05). With a high level of concentrate, LY addition increased total bacterial direct counts and fungal zoospores (p < 0.05), but decreased protozoal populations (p < 0.05). High-concentrate diet and LY supplementation increased nitrogen absorption and the efficiency of microbial nitrogen protein production. In conclusion, feeding beef cattle with 4 g/hd/d LY at a R:C ratio of 40:60 increased C(3) and nutritional digestibility while lowering protozoal population.