Cargando…
Damage Detection and Localization under Variable Environmental Conditions Using Compressed and Reconstructed Bayesian Virtual Sensor Data
Structural health monitoring (SHM) with a dense sensor network and repeated vibration measurements produces lots of data that have to be stored. If the sensor network is redundant, data compression is possible by storing the signals of selected Bayesian virtual sensors only, from which the omitted s...
Autor principal: | Kullaa, Jyrki |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8749672/ https://www.ncbi.nlm.nih.gov/pubmed/35009842 http://dx.doi.org/10.3390/s22010306 |
Ejemplares similares
-
Impact Damage Localisation with Piezoelectric Sensors under Operational and Environmental Conditions
por: Salmanpour, Mohammad Saleh, et al.
Publicado: (2017) -
Compressed-Sensing Reconstruction Based on Block Sparse Bayesian Learning in Bearing-Condition Monitoring
por: Sun, Jiedi, et al.
Publicado: (2017) -
REDA: A New Methodology to Validate Sensor Systems for Person Detection under Variable Environmental Conditions
por: Meltebrink, Christian, et al.
Publicado: (2022) -
Carbon Nanofiber Cement Sensors to Detect Strain and Damage of Concrete Specimens Under Compression
por: Galao, Oscar, et al.
Publicado: (2017) -
A Method of Damage Detection Efficiency Enhancement of PZT Sensor Networks under Influence of Environmental and Operational Conditions
por: Dziendzikowski, Michal, et al.
Publicado: (2022)