Cargando…
Inline 3D Volumetric Measurement of Moisture Content in Rice Using Regression-Based ML of RF Tomographic Imaging
The moisture content of stored rice is dependent on the surrounding and environmental factors which in turn affect the quality and economic value of the grains. Therefore, the moisture content of grains needs to be measured frequently to ensure that optimum conditions that preserve their quality are...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8749697/ https://www.ncbi.nlm.nih.gov/pubmed/35009947 http://dx.doi.org/10.3390/s22010405 |
_version_ | 1784631291684061184 |
---|---|
author | Almaleeh, Abd Alazeez Zakaria, Ammar Kamarudin, Latifah Munirah Rahiman, Mohd Hafiz Fazalul Ndzi, David Lorater Ismail, Ismahadi |
author_facet | Almaleeh, Abd Alazeez Zakaria, Ammar Kamarudin, Latifah Munirah Rahiman, Mohd Hafiz Fazalul Ndzi, David Lorater Ismail, Ismahadi |
author_sort | Almaleeh, Abd Alazeez |
collection | PubMed |
description | The moisture content of stored rice is dependent on the surrounding and environmental factors which in turn affect the quality and economic value of the grains. Therefore, the moisture content of grains needs to be measured frequently to ensure that optimum conditions that preserve their quality are maintained. The current state of the art for moisture measurement of rice in a silo is based on grab sampling or relies on single rod sensors placed randomly into the grain. The sensors that are currently used are very localized and are, therefore, unable to provide continuous measurement of the moisture distribution in the silo. To the authors’ knowledge, there is no commercially available 3D volumetric measurement system for rice moisture content in a silo. Hence, this paper presents results of work carried out using low-cost wireless devices that can be placed around the silo to measure changes in the moisture content of rice. This paper proposes a novel technique based on radio frequency tomographic imaging using low-cost wireless devices and regression-based machine learning to provide contactless non-destructive 3D volumetric moisture content distribution in stored rice grain. This proposed technique can detect multiple levels of localized moisture distributions in the silo with accuracies greater than or equal to 83.7%, depending on the size and shape of the sample under test. Unlike other approaches proposed in open literature or employed in the sector, the proposed system can be deployed to provide continuous monitoring of the moisture distribution in silos. |
format | Online Article Text |
id | pubmed-8749697 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-87496972022-01-12 Inline 3D Volumetric Measurement of Moisture Content in Rice Using Regression-Based ML of RF Tomographic Imaging Almaleeh, Abd Alazeez Zakaria, Ammar Kamarudin, Latifah Munirah Rahiman, Mohd Hafiz Fazalul Ndzi, David Lorater Ismail, Ismahadi Sensors (Basel) Article The moisture content of stored rice is dependent on the surrounding and environmental factors which in turn affect the quality and economic value of the grains. Therefore, the moisture content of grains needs to be measured frequently to ensure that optimum conditions that preserve their quality are maintained. The current state of the art for moisture measurement of rice in a silo is based on grab sampling or relies on single rod sensors placed randomly into the grain. The sensors that are currently used are very localized and are, therefore, unable to provide continuous measurement of the moisture distribution in the silo. To the authors’ knowledge, there is no commercially available 3D volumetric measurement system for rice moisture content in a silo. Hence, this paper presents results of work carried out using low-cost wireless devices that can be placed around the silo to measure changes in the moisture content of rice. This paper proposes a novel technique based on radio frequency tomographic imaging using low-cost wireless devices and regression-based machine learning to provide contactless non-destructive 3D volumetric moisture content distribution in stored rice grain. This proposed technique can detect multiple levels of localized moisture distributions in the silo with accuracies greater than or equal to 83.7%, depending on the size and shape of the sample under test. Unlike other approaches proposed in open literature or employed in the sector, the proposed system can be deployed to provide continuous monitoring of the moisture distribution in silos. MDPI 2022-01-05 /pmc/articles/PMC8749697/ /pubmed/35009947 http://dx.doi.org/10.3390/s22010405 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Almaleeh, Abd Alazeez Zakaria, Ammar Kamarudin, Latifah Munirah Rahiman, Mohd Hafiz Fazalul Ndzi, David Lorater Ismail, Ismahadi Inline 3D Volumetric Measurement of Moisture Content in Rice Using Regression-Based ML of RF Tomographic Imaging |
title | Inline 3D Volumetric Measurement of Moisture Content in Rice Using Regression-Based ML of RF Tomographic Imaging |
title_full | Inline 3D Volumetric Measurement of Moisture Content in Rice Using Regression-Based ML of RF Tomographic Imaging |
title_fullStr | Inline 3D Volumetric Measurement of Moisture Content in Rice Using Regression-Based ML of RF Tomographic Imaging |
title_full_unstemmed | Inline 3D Volumetric Measurement of Moisture Content in Rice Using Regression-Based ML of RF Tomographic Imaging |
title_short | Inline 3D Volumetric Measurement of Moisture Content in Rice Using Regression-Based ML of RF Tomographic Imaging |
title_sort | inline 3d volumetric measurement of moisture content in rice using regression-based ml of rf tomographic imaging |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8749697/ https://www.ncbi.nlm.nih.gov/pubmed/35009947 http://dx.doi.org/10.3390/s22010405 |
work_keys_str_mv | AT almaleehabdalazeez inline3dvolumetricmeasurementofmoisturecontentinriceusingregressionbasedmlofrftomographicimaging AT zakariaammar inline3dvolumetricmeasurementofmoisturecontentinriceusingregressionbasedmlofrftomographicimaging AT kamarudinlatifahmunirah inline3dvolumetricmeasurementofmoisturecontentinriceusingregressionbasedmlofrftomographicimaging AT rahimanmohdhafizfazalul inline3dvolumetricmeasurementofmoisturecontentinriceusingregressionbasedmlofrftomographicimaging AT ndzidavidlorater inline3dvolumetricmeasurementofmoisturecontentinriceusingregressionbasedmlofrftomographicimaging AT ismailismahadi inline3dvolumetricmeasurementofmoisturecontentinriceusingregressionbasedmlofrftomographicimaging |