Cargando…

An Efficient Probe-Based Routing for Content-Centric Networking

With the development of new technologies and applications, such as the Internet of Things, smart cities, 5G, and edge computing, traditional Internet Protocol-based (IP-based) networks have been exposed as having many problems. Information-Centric Networking (ICN), Named Data Networking (NDN), and C...

Descripción completa

Detalles Bibliográficos
Autores principales: Tsai, Pei-Hsuan, Zhang, Jun-Bin, Tsai, Meng-Hsun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8749700/
https://www.ncbi.nlm.nih.gov/pubmed/35009883
http://dx.doi.org/10.3390/s22010341
_version_ 1784631292393947136
author Tsai, Pei-Hsuan
Zhang, Jun-Bin
Tsai, Meng-Hsun
author_facet Tsai, Pei-Hsuan
Zhang, Jun-Bin
Tsai, Meng-Hsun
author_sort Tsai, Pei-Hsuan
collection PubMed
description With the development of new technologies and applications, such as the Internet of Things, smart cities, 5G, and edge computing, traditional Internet Protocol-based (IP-based) networks have been exposed as having many problems. Information-Centric Networking (ICN), Named Data Networking (NDN), and Content-Centric Networking (CCN) are therefore proposed as an alternative for future networks. However, unlike IP-based networks, CCN routing is non-deterministic and difficult to optimize due to frequent in-network caching replacement. This paper presents a novel probe-based routing algorithm that explores real-time in-network caching to ensure the routing table storing the optimal paths to the nearest content provider is up to date. Effective probe-selections, Pending Interest Table (PIT) probe, and Forwarding Information Base (FIB) probe are discussed and analyzed by simulation with different performance measurements. Compared with the basic CCN, in terms of qualitative analysis, the additional computational overhead of our approach is O(N(CS) + N(rt) + N(FIB) ∗ N(SPT)) and O(N(FIB)) on processing interest packets and data packets, respectively. However, in terms of quantitative analysis, our approach reduces the number of timeout interests by 6% and the average response time by 0.6 s. Furthermore, although basic CCN and our approach belong to the same Quality of Service (QoS) category, our approach outperforms basic CCN in terms of real values. Additionally, our probe-based approach performs better than RECIF+PIF and EEGPR. Owing to speedup FIB updating by probes, our approach provides more reliable interest packet routing when accounting for router failures. In summary, the results demonstrate that compared to basic CCN, our probe-based routing approach raises FIB accuracy and reduces network congestion and response time, resulting in efficient routing.
format Online
Article
Text
id pubmed-8749700
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-87497002022-01-12 An Efficient Probe-Based Routing for Content-Centric Networking Tsai, Pei-Hsuan Zhang, Jun-Bin Tsai, Meng-Hsun Sensors (Basel) Article With the development of new technologies and applications, such as the Internet of Things, smart cities, 5G, and edge computing, traditional Internet Protocol-based (IP-based) networks have been exposed as having many problems. Information-Centric Networking (ICN), Named Data Networking (NDN), and Content-Centric Networking (CCN) are therefore proposed as an alternative for future networks. However, unlike IP-based networks, CCN routing is non-deterministic and difficult to optimize due to frequent in-network caching replacement. This paper presents a novel probe-based routing algorithm that explores real-time in-network caching to ensure the routing table storing the optimal paths to the nearest content provider is up to date. Effective probe-selections, Pending Interest Table (PIT) probe, and Forwarding Information Base (FIB) probe are discussed and analyzed by simulation with different performance measurements. Compared with the basic CCN, in terms of qualitative analysis, the additional computational overhead of our approach is O(N(CS) + N(rt) + N(FIB) ∗ N(SPT)) and O(N(FIB)) on processing interest packets and data packets, respectively. However, in terms of quantitative analysis, our approach reduces the number of timeout interests by 6% and the average response time by 0.6 s. Furthermore, although basic CCN and our approach belong to the same Quality of Service (QoS) category, our approach outperforms basic CCN in terms of real values. Additionally, our probe-based approach performs better than RECIF+PIF and EEGPR. Owing to speedup FIB updating by probes, our approach provides more reliable interest packet routing when accounting for router failures. In summary, the results demonstrate that compared to basic CCN, our probe-based routing approach raises FIB accuracy and reduces network congestion and response time, resulting in efficient routing. MDPI 2022-01-04 /pmc/articles/PMC8749700/ /pubmed/35009883 http://dx.doi.org/10.3390/s22010341 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Tsai, Pei-Hsuan
Zhang, Jun-Bin
Tsai, Meng-Hsun
An Efficient Probe-Based Routing for Content-Centric Networking
title An Efficient Probe-Based Routing for Content-Centric Networking
title_full An Efficient Probe-Based Routing for Content-Centric Networking
title_fullStr An Efficient Probe-Based Routing for Content-Centric Networking
title_full_unstemmed An Efficient Probe-Based Routing for Content-Centric Networking
title_short An Efficient Probe-Based Routing for Content-Centric Networking
title_sort efficient probe-based routing for content-centric networking
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8749700/
https://www.ncbi.nlm.nih.gov/pubmed/35009883
http://dx.doi.org/10.3390/s22010341
work_keys_str_mv AT tsaipeihsuan anefficientprobebasedroutingforcontentcentricnetworking
AT zhangjunbin anefficientprobebasedroutingforcontentcentricnetworking
AT tsaimenghsun anefficientprobebasedroutingforcontentcentricnetworking
AT tsaipeihsuan efficientprobebasedroutingforcontentcentricnetworking
AT zhangjunbin efficientprobebasedroutingforcontentcentricnetworking
AT tsaimenghsun efficientprobebasedroutingforcontentcentricnetworking