Cargando…
An FPGA-Embedded Brain-Computer Interface System to Support Individual Autonomy in Locked-In Individuals
Brain-computer interfaces (BCI) can detect specific EEG patterns and translate them into control signals for external devices by providing people suffering from severe motor disabilities with an alternative/additional channel to communicate and interact with the outer world. Many EEG-based BCIs rely...
Autores principales: | Palumbo, Arrigo, Ielpo, Nicola, Calabrese, Barbara |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8749705/ https://www.ncbi.nlm.nih.gov/pubmed/35009860 http://dx.doi.org/10.3390/s22010318 |
Ejemplares similares
-
Brain-Computer Interfaces for Communication: Preferences of Individuals With Locked-in Syndrome
por: Branco, Mariana P., et al.
Publicado: (2021) -
Biopotential Signal Monitoring Systems in Rehabilitation: A Review
por: Palumbo, Arrigo, et al.
Publicado: (2021) -
Motor-Imagery EEG-Based BCIs in Wheelchair Movement and Control: A Systematic Literature Review
por: Palumbo, Arrigo, et al.
Publicado: (2021) -
SIMpLE: A Mobile Cloud-Based System for Health Monitoring of People with ALS †
por: Palumbo, Arrigo, et al.
Publicado: (2021) -
Human–Robot Interface for Embedding Sliding Adjustable Autonomy Methods
por: Sfair Palar, Piatan, et al.
Publicado: (2020)