Cargando…
A Novel Infrared and Visible Image Fusion Approach Based on Adversarial Neural Network
The presence of fake pictures affects the reliability of visible face images under specific circumstances. This paper presents a novel adversarial neural network designed named as the FTSGAN for infrared and visible image fusion and we utilize FTSGAN model to fuse the face image features of infrared...
Autores principales: | Chen, Xianglong, Wang, Haipeng, Liang, Yaohui, Meng, Ying, Wang, Shifeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8749719/ https://www.ncbi.nlm.nih.gov/pubmed/35009852 http://dx.doi.org/10.3390/s22010304 |
Ejemplares similares
-
A Generative Adversarial Network for Infrared and Visible Image Fusion Based on Semantic Segmentation
por: Hou, Jilei, et al.
Publicado: (2021) -
MJ-GAN: Generative Adversarial Network with Multi-Grained Feature Extraction and Joint Attention Fusion for Infrared and Visible Image Fusion
por: Yang, Danqing, et al.
Publicado: (2023) -
Infrared and Visible Image Fusion Method Using Salience Detection and Convolutional Neural Network
por: Wang, Zetian, et al.
Publicado: (2022) -
SCFusion: Infrared and Visible Fusion Based on Salient Compensation
por: Liu, Haipeng, et al.
Publicado: (2023) -
DRSNFuse: Deep Residual Shrinkage Network for Infrared and Visible Image Fusion
por: Wang, Hongfeng, et al.
Publicado: (2022)