Cargando…
Deterioration Level Estimation Based on Convolutional Neural Network Using Confidence-Aware Attention Mechanism for Infrastructure Inspection
This paper presents deterioration level estimation based on convolutional neural networks using a confidence-aware attention mechanism for infrastructure inspection. Spatial attention mechanisms try to highlight the important regions in feature maps for estimation by using an attention map. The atte...
Autores principales: | Ogawa, Naoki, Maeda, Keisuke, Ogawa, Takahiro, Haseyama, Miki |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8749752/ https://www.ncbi.nlm.nih.gov/pubmed/35009924 http://dx.doi.org/10.3390/s22010382 |
Ejemplares similares
-
Reliable Estimation of Deterioration Levels via Late Fusion Using Multi-View Distress Images for Practical Inspection
por: Maeda, Keisuke, et al.
Publicado: (2021) -
Estimation of Degradation Degree in Road Infrastructure Based on Multi-Modal ABN Using Contrastive Learning
por: Higashi, Takaaki, et al.
Publicado: (2023) -
Detection of Important Scenes in Baseball Videos via a Time-Lag-Aware Multimodal Variational Autoencoder †
por: Hirasawa, Kaito, et al.
Publicado: (2021) -
Time-Lag Aware Latent Variable Model for Prediction of Important Scenes Using Baseball Videos and Tweets
por: Hirasawa, Kaito, et al.
Publicado: (2022) -
Few-Shot Personalized Saliency Prediction Based on Adaptive Image Selection Considering Object and Visual Attention†
por: Moroto, Yuya, et al.
Publicado: (2020)