Cargando…

The Effect of Rumination Time on Milk Performance and Methane Emission of Dairy Cows Fed Partial Mixed Ration Based on Maize Silage

SIMPLE SUMMARY: Greenhouse gas emission has attracted considerable public attention in recent years, driving the search for genetic, nutritional, and management strategies to reduce methane emissions and increase the sustainability of milk production. Rumination activity has an important function in...

Descripción completa

Detalles Bibliográficos
Autores principales: Mikuła, Robert, Pszczola, Marcin, Rzewuska, Katarzyna, Mucha, Sebastian, Nowak, Włodzimierz, Strabel, Tomasz
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8749766/
https://www.ncbi.nlm.nih.gov/pubmed/35011156
http://dx.doi.org/10.3390/ani12010050
Descripción
Sumario:SIMPLE SUMMARY: Greenhouse gas emission has attracted considerable public attention in recent years, driving the search for genetic, nutritional, and management strategies to reduce methane emissions and increase the sustainability of milk production. Rumination activity has an important function in feed particle size reduction, condition of feeding behavior, and feed intake as well as in stabilizing rumen fluid pH through saliva production. A total of 365 high-yielding Polish Holstein -Friesian multiparous dairy cows were included in the study covering 24 to 304 days of lactation. Next, the data from the cows were assigned to three groups based on daily rumination time: low rumination up to 412 min/day (up to 25th rumination percentile), medium rumination from 412 to 527 min/day (between the 25th and 75th percentile), and high rumination above 527 min/day (from the 75th percentile). We showed that a longer rumination time leads to a lower methane emission level. Therefore, strategies that increase chewing activity may be used to reduce the environmental impact of dairy cows production. ABSTRACT: The objective of this study was to determine the effect of the rumination time on milk yield and composition as well as methane emission during lactation in high-yielding dairy cows fed a partial mixed ration based on maize silage without pasture access. A total of 365 high-yielding Polish Holstein-Friesian multiparous dairy cows were included in the study covering 24 to 304 days of lactation. Methane emission, rumination time, and milk production traits were observed for the period of 12 months. Next, the data from the cows were assigned to three groups based on daily rumination time: low rumination up to 412 min/day (up to 25th rumination percentile), medium rumination from 412 to 527 min/day (between the 25th and 75th percentile), and high rumination above 527 min/day (from the 75th percentile). Rumination time had no effect on milk yield, energy-corrected milk yield, or fat and protein-corrected milk yield. High rumination time had an effect on lower fat concentration in milk compared with the medium and low rumination groups. The highest daily CH(4) production was noted in low rumination cows, which emitted 1.8% more CH(4) than medium rumination cows and 4.2% more than high rumination cows. Rumination time affected daily methane production per kg of milk. Cows from the high rumination group produced 2.9% less CH(4) per milk unit compared to medium rumination cows and 4.6% in comparison to low rumination cows. Similar observations were noted for daily CH(4) production per ECM unit. In conclusion, a longer rumination time is connected with lower methane emission as well as lower methane production per milk unit in high-yielding dairy cows fed a maize silage-based partial mixed ration without pasture access.