Cargando…
Classification of Clinically Significant Prostate Cancer on Multi-Parametric MRI: A Validation Study Comparing Deep Learning and Radiomics
SIMPLE SUMMARY: Computer-aided diagnosis systems to improve significant prostate cancer (PCa) diagnoses are being reported in the literature. These methods are based on either deep learning or radiomics. However, there is a lack of scientific evidence comparing these methods on the same external val...
Autores principales: | Castillo T., Jose M., Arif, Muhammad, Starmans, Martijn P. A., Niessen, Wiro J., Bangma, Chris H., Schoots, Ivo G., Veenland, Jifke F. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8749796/ https://www.ncbi.nlm.nih.gov/pubmed/35008177 http://dx.doi.org/10.3390/cancers14010012 |
Ejemplares similares
-
Clinically significant prostate cancer detection and segmentation in low-risk patients using a convolutional neural network on multi-parametric MRI
por: Arif, Muhammad, et al.
Publicado: (2020) -
A Multi-Center, Multi-Vendor Study to Evaluate the Generalizability of a Radiomics Model for Classifying Prostate cancer: High Grade vs. Low Grade
por: Castillo T., Jose M., et al.
Publicado: (2021) -
Automated Classification of Significant Prostate Cancer on MRI: A Systematic Review on the Performance of Machine Learning Applications
por: Castillo T., Jose M., et al.
Publicado: (2020) -
Quantification of Heterogeneity as a Biomarker in Tumor Imaging: A Systematic Review
por: Alic, Lejla, et al.
Publicado: (2014) -
Can DCE-MRI Explain the Heterogeneity in Radiopeptide Uptake Imaged by SPECT in a Pancreatic Neuroendocrine Tumor Model?
por: Bol, Karin, et al.
Publicado: (2013)