Cargando…
Generative Adversarial Networks for Morphological–Temporal Classification of Stem Cell Images
Frequently, neural network training involving biological images suffers from a lack of data, resulting in inefficient network learning. This issue stems from limitations in terms of time, resources, and difficulty in cellular experimentation and data collection. For example, when performing experime...
Autores principales: | Witmer, Adam, Bhanu, Bir |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8749838/ https://www.ncbi.nlm.nih.gov/pubmed/35009749 http://dx.doi.org/10.3390/s22010206 |
Ejemplares similares
-
DeephESC 2.0: Deep Generative Multi Adversarial Networks for improving the classification of hESC
por: Theagarajan, Rajkumar, et al.
Publicado: (2019) -
Generative adversarial networks and image-based malware classification
por: Nguyen, Huy, et al.
Publicado: (2023) -
Generative Adversarial Network Image Synthesis Method for Skin Lesion Generation and Classification
por: Mutepfe, Freedom, et al.
Publicado: (2021) -
Deep Learning of Cancer Stem Cell Morphology Using Conditional Generative Adversarial Networks
por: Aida, Saori, et al.
Publicado: (2020) -
Generative adversarial networks for image generation
por: Mao, Xudong, et al.
Publicado: (2021)