Cargando…
Entropy-Based Variational Scheme with Component Splitting for the Efficient Learning of Gamma Mixtures
Finite Gamma mixture models have proved to be flexible and can take prior information into account to improve generalization capability, which make them interesting for several machine learning and data mining applications. In this study, an efficient Gamma mixture model-based approach for proportio...
Autores principales: | Bourouis, Sami, Pawar, Yogesh, Bouguila, Nizar |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8749844/ https://www.ncbi.nlm.nih.gov/pubmed/35009726 http://dx.doi.org/10.3390/s22010186 |
Ejemplares similares
-
Bayesian Learning of Shifted-Scaled Dirichlet Mixture Models and Its Application to Early COVID-19 Detection in Chest X-ray Images
por: Bourouis, Sami, et al.
Publicado: (2021) -
Discriminative Learning Approach Based on Flexible Mixture Model for Medical Data Categorization and Recognition
por: Alharithi, Fahd, et al.
Publicado: (2021) -
Mixture models and applications
por: Bouguila, Nizar, et al.
Publicado: (2019) -
Data-Weighted Multivariate Generalized Gaussian Mixture Model: Application to Point Cloud Robust Registration
por: Ge, Bingwei, et al.
Publicado: (2023) -
Unsupervised Mixture Models on the Edge for Smart Energy Consumption Segmentation with Feature Saliency
por: Al-Bazzaz, Hussein, et al.
Publicado: (2023)