Cargando…
Anomaly Detection in Asset Degradation Process Using Variational Autoencoder and Explanations
Development of predictive maintenance (PdM) solutions is one of the key aspects of Industry 4.0. In recent years, more attention has been paid to data-driven techniques, which use machine learning to monitor the health of an industrial asset. The major issue in the implementation of PdM models is a...
Autores principales: | Jakubowski, Jakub, Stanisz, Przemysław, Bobek, Szymon, Nalepa, Grzegorz J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8749861/ https://www.ncbi.nlm.nih.gov/pubmed/35009832 http://dx.doi.org/10.3390/s22010291 |
Ejemplares similares
-
Anomaly Detection With Conditional Variational Autoencoders
por: Pol, Adrian Alan, et al.
Publicado: (2020) -
Autoencoders for anomaly detection at LHCb
por: Radziunas Salinas, Yago
Publicado: (2022) -
Anomaly detection in images with shared autoencoders
por: Jia, Haoyang, et al.
Publicado: (2023) -
Anomaly Detection for Agricultural Vehicles Using Autoencoders
por: Mujkic, Esma, et al.
Publicado: (2022) -
Anomaly Detection of Water Level Using Deep Autoencoder
por: Nicholaus, Isack Thomas, et al.
Publicado: (2021)