Cargando…
Two-Stage Segmentation Framework Based on Distance Transformation
With the rise of deep learning, using deep learning to segment lesions and assist in diagnosis has become an effective means to promote clinical medical analysis. However, the partial volume effect of organ tissues leads to unclear and blurred edges of ROI in medical images, making it challenging to...
Autores principales: | Huang, Xiaoyang, Lin, Zhi, Jiao, Yudi, Chan, Moon-Tong, Huang, Shaohui, Wang, Liansheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8749866/ https://www.ncbi.nlm.nih.gov/pubmed/35009793 http://dx.doi.org/10.3390/s22010250 |
Ejemplares similares
-
Contrastive learning–guided multi-meta attention network for breast ultrasound video diagnosis
por: Huang, Xiaoyang, et al.
Publicado: (2022) -
An improved parallel fuzzy connected image segmentation method based on CUDA
por: Wang, Liansheng, et al.
Publicado: (2016) -
Two-Stage Framework for Faster Semantic Segmentation
por: Cruz, Ricardo, et al.
Publicado: (2023) -
Accurate mandibular canal segmentation of dental CBCT using a two-stage 3D-UNet based segmentation framework
por: Lin, Xi, et al.
Publicado: (2023) -
Nested Dilation Networks for Brain Tumor Segmentation Based on Magnetic Resonance Imaging
por: Wang, Liansheng, et al.
Publicado: (2019)