Cargando…
Efficient Image Super-Resolution via Self-Calibrated Feature Fuse
Recently, many super-resolution reconstruction (SR) feedforward networks based on deep learning have been proposed. These networks enable the reconstructed images to achieve convincing results. However, due to a large amount of computation and parameters, SR technology is greatly limited in devices...
Autores principales: | Tan, Congming, Cheng, Shuli, Wang, Liejun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8749868/ https://www.ncbi.nlm.nih.gov/pubmed/35009871 http://dx.doi.org/10.3390/s22010329 |
Ejemplares similares
-
Image Super-Resolution via Dual-Level Recurrent Residual Networks
por: Tan, Congming, et al.
Publicado: (2022) -
Lightweight Image Super-Resolution Based on Re-Parameterization and Self-Calibrated Convolution
por: Zhang, Sufan, et al.
Publicado: (2022) -
Lightweight Super-Resolution with Self-Calibrated Convolution for Panoramic Videos
por: Shang, Fanjie, et al.
Publicado: (2022) -
Restoration and Calibration of Tilting Hyperspectral Super-Resolution Image
por: Zhang, Xizhen, et al.
Publicado: (2020) -
Asymmetric coordinate attention spectral-spatial feature fusion network for hyperspectral image classification
por: Cheng, Shuli, et al.
Publicado: (2021)