Cargando…
Multi-Task Model for Esophageal Lesion Analysis Using Endoscopic Images: Classification with Image Retrieval and Segmentation with Attention
The automatic analysis of endoscopic images to assist endoscopists in accurately identifying the types and locations of esophageal lesions remains a challenge. In this paper, we propose a novel multi-task deep learning model for automatic diagnosis, which does not simply replace the role of endoscop...
Autores principales: | Yu, Xiaoyuan, Tang, Suigu, Cheang, Chak Fong, Yu, Hon Ho, Choi, I Cheong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8749873/ https://www.ncbi.nlm.nih.gov/pubmed/35009825 http://dx.doi.org/10.3390/s22010283 |
Ejemplares similares
-
Diagnosis of Esophageal Lesions by Multi-Classification and Segmentation Using an Improved Multi-Task Deep Learning Model
por: Tang, Suigu, et al.
Publicado: (2022) -
Automatic classification of esophageal lesions in endoscopic images using a convolutional neural network
por: Liu, Gaoshuang, et al.
Publicado: (2020) -
DISR: Dental Image Segmentation and Retrieval
por: Pilevar, Abdol Hamid
Publicado: (2012) -
An image retrieval framework for real-time endoscopic image retargeting
por: Ye, Menglong, et al.
Publicado: (2017) -
A Novel Multi-Task Learning Network Based on Melanoma Segmentation and Classification with Skin Lesion Images
por: Alenezi, Fayadh, et al.
Publicado: (2023)