Cargando…
Real time deep learning framework to monitor social distancing using improved single shot detector based on overhead position
The current COVID 19 halo infection has caused a severe catastrophe with its deadly spread. Despite the implementation of the vaccine, the severity of the infection has not diminished, and it has become stronger and more destructive. So, the only solution to protect ourselves from infection is socia...
Autores principales: | Gopal, Bharathi, Ganesan, Anandharaj |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8749912/ https://www.ncbi.nlm.nih.gov/pubmed/35035588 http://dx.doi.org/10.1007/s12145-021-00758-4 |
Ejemplares similares
-
A deep learning-based social distance monitoring framework for COVID-19
por: Ahmed, Imran, et al.
Publicado: (2021) -
Low-Overhead Accrual Failure Detector
por: Ren, Xiao, et al.
Publicado: (2012) -
Social distance monitoring framework using deep learning architecture to control infection transmission of COVID-19 pandemic
por: Ahmed, Imran, et al.
Publicado: (2021) -
A Real-Time Crowd Monitoring and Management System for Social Distance Classification and Healthcare Using Deep Learning
por: Yadav, Sangeeta, et al.
Publicado: (2022) -
A fully open-source framework for deep learning protein real-valued distances
por: Adhikari, Badri
Publicado: (2020)