Cargando…
Force Myography-Based Human Robot Interactions via Deep Domain Adaptation and Generalization
Estimating applied force using force myography (FMG) technique can be effective in human-robot interactions (HRI) using data-driven models. A model predicts well when adequate training and evaluation are observed in same session, which is sometimes time consuming and impractical. In real scenarios,...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8749939/ https://www.ncbi.nlm.nih.gov/pubmed/35009752 http://dx.doi.org/10.3390/s22010211 |
_version_ | 1784631349124005888 |
---|---|
author | Zakia, Umme Menon, Carlo |
author_facet | Zakia, Umme Menon, Carlo |
author_sort | Zakia, Umme |
collection | PubMed |
description | Estimating applied force using force myography (FMG) technique can be effective in human-robot interactions (HRI) using data-driven models. A model predicts well when adequate training and evaluation are observed in same session, which is sometimes time consuming and impractical. In real scenarios, a pretrained transfer learning model predicting forces quickly once fine-tuned to target distribution would be a favorable choice and hence needs to be examined. Therefore, in this study a unified supervised FMG-based deep transfer learner (SFMG-DTL) model using CNN architecture was pretrained with multiple sessions FMG source data (D(s), T(s)) and evaluated in estimating forces in separate target domains (D(t), T(t)) via supervised domain adaptation (SDA) and supervised domain generalization (SDG). For SDA, case (i) intra-subject evaluation (D(s) ≠ D(t-SDA), T(s) ≈ T(t-SDA)) was examined, while for SDG, case (ii) cross-subject evaluation (D(s) ≠ D(t-SDG), T(s) ≠ T(t-SDG)) was examined. Fine tuning with few “target training data” calibrated the model effectively towards target adaptation. The proposed SFMG-DTL model performed better with higher estimation accuracies and lower errors (R(2) ≥ 88%, NRMSE ≤ 0.6) in both cases. These results reveal that interactive force estimations via transfer learning will improve daily HRI experiences where “target training data” is limited, or faster adaptation is required. |
format | Online Article Text |
id | pubmed-8749939 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-87499392022-01-12 Force Myography-Based Human Robot Interactions via Deep Domain Adaptation and Generalization Zakia, Umme Menon, Carlo Sensors (Basel) Article Estimating applied force using force myography (FMG) technique can be effective in human-robot interactions (HRI) using data-driven models. A model predicts well when adequate training and evaluation are observed in same session, which is sometimes time consuming and impractical. In real scenarios, a pretrained transfer learning model predicting forces quickly once fine-tuned to target distribution would be a favorable choice and hence needs to be examined. Therefore, in this study a unified supervised FMG-based deep transfer learner (SFMG-DTL) model using CNN architecture was pretrained with multiple sessions FMG source data (D(s), T(s)) and evaluated in estimating forces in separate target domains (D(t), T(t)) via supervised domain adaptation (SDA) and supervised domain generalization (SDG). For SDA, case (i) intra-subject evaluation (D(s) ≠ D(t-SDA), T(s) ≈ T(t-SDA)) was examined, while for SDG, case (ii) cross-subject evaluation (D(s) ≠ D(t-SDG), T(s) ≠ T(t-SDG)) was examined. Fine tuning with few “target training data” calibrated the model effectively towards target adaptation. The proposed SFMG-DTL model performed better with higher estimation accuracies and lower errors (R(2) ≥ 88%, NRMSE ≤ 0.6) in both cases. These results reveal that interactive force estimations via transfer learning will improve daily HRI experiences where “target training data” is limited, or faster adaptation is required. MDPI 2021-12-29 /pmc/articles/PMC8749939/ /pubmed/35009752 http://dx.doi.org/10.3390/s22010211 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Zakia, Umme Menon, Carlo Force Myography-Based Human Robot Interactions via Deep Domain Adaptation and Generalization |
title | Force Myography-Based Human Robot Interactions via Deep Domain Adaptation and Generalization |
title_full | Force Myography-Based Human Robot Interactions via Deep Domain Adaptation and Generalization |
title_fullStr | Force Myography-Based Human Robot Interactions via Deep Domain Adaptation and Generalization |
title_full_unstemmed | Force Myography-Based Human Robot Interactions via Deep Domain Adaptation and Generalization |
title_short | Force Myography-Based Human Robot Interactions via Deep Domain Adaptation and Generalization |
title_sort | force myography-based human robot interactions via deep domain adaptation and generalization |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8749939/ https://www.ncbi.nlm.nih.gov/pubmed/35009752 http://dx.doi.org/10.3390/s22010211 |
work_keys_str_mv | AT zakiaumme forcemyographybasedhumanrobotinteractionsviadeepdomainadaptationandgeneralization AT menoncarlo forcemyographybasedhumanrobotinteractionsviadeepdomainadaptationandgeneralization |