Cargando…
Application of Reinforcement Learning and Deep Learning in Multiple-Input and Multiple-Output (MIMO) Systems
The current wireless communication infrastructure has to face exponential development in mobile traffic size, which demands high data rate, reliability, and low latency. MIMO systems and their variants (i.e., Multi-User MIMO and Massive MIMO) are the most promising 5G wireless communication systems...
Autores principales: | Naeem, Muddasar, De Pietro, Giuseppe, Coronato, Antonio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8749942/ https://www.ncbi.nlm.nih.gov/pubmed/35009848 http://dx.doi.org/10.3390/s22010309 |
Ejemplares similares
-
Optimal User Scheduling in Multi Antenna System Using Multi Agent Reinforcement Learning
por: Naeem, Muddasar, et al.
Publicado: (2022) -
Adaptive Multi-Node Multiple Input and Multiple Output (MIMO) Transmission for Mobile Wireless Multimedia Sensor Networks
por: Cho, Sunghyun, et al.
Publicado: (2013) -
Cluster Content Caching: A Deep Reinforcement Learning Approach to Improve Energy Efficiency in Cell-Free Massive Multiple-Input Multiple-Output Networks
por: Tan, Fangqing, et al.
Publicado: (2023) -
Design and Imaging of Ground-Based Multiple-Input Multiple-Output Synthetic Aperture Radar (MIMO SAR) with Non-Collinear Arrays
por: Hu, Cheng, et al.
Publicado: (2017) -
Performance evaluation of frequency division duplex (FDD) massive multiple input multiple output (MIMO) under different correlation models
por: Abdul-Hadi, Alaa M., et al.
Publicado: (2022)