Cargando…

Genetic Mutations of Pancreatic Cancer and Genetically Engineered Mouse Models

SIMPLE SUMMARY: Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy. Recent multi-gene analysis approaches such as next-generation sequencing have provided useful information on the molecular characterization of pancreatic tumors. Different types of pancreatic cancer and precur...

Descripción completa

Detalles Bibliográficos
Autores principales: Saiki, Yuriko, Jiang, Can, Ohmuraya, Masaki, Furukawa, Toru
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8750056/
https://www.ncbi.nlm.nih.gov/pubmed/35008235
http://dx.doi.org/10.3390/cancers14010071
_version_ 1784631373751910400
author Saiki, Yuriko
Jiang, Can
Ohmuraya, Masaki
Furukawa, Toru
author_facet Saiki, Yuriko
Jiang, Can
Ohmuraya, Masaki
Furukawa, Toru
author_sort Saiki, Yuriko
collection PubMed
description SIMPLE SUMMARY: Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy. Recent multi-gene analysis approaches such as next-generation sequencing have provided useful information on the molecular characterization of pancreatic tumors. Different types of pancreatic cancer and precursor lesions are characterized by specific molecular alterations. Genetically engineered mouse models (GEMMs) of PDAC are useful tools to understand the roles of altered genes. Most GEMMs are driven by oncogenic Kras, and can recapitulate the histological and molecular hallmarks of human PDAC and comparable precursor lesions. In this review, we summarize the main molecular alterations found in pancreatic neoplasms and GEMMs developed based on these alterations. ABSTRACT: Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy, and the seventh leading cause of cancer-related deaths worldwide. An improved understanding of tumor biology and novel therapeutic discoveries are needed to improve overall survival. Recent multi-gene analysis approaches such as next-generation sequencing have provided useful information on the molecular characterization of pancreatic tumors. Different types of pancreatic cancer and precursor lesions are characterized by specific molecular alterations. Genetically engineered mouse models (GEMMs) of PDAC are useful to understand the roles of altered genes. Most GEMMs are driven by oncogenic Kras, and can recapitulate the histological and molecular hallmarks of human PDAC and comparable precursor lesions. Advanced GEMMs permit the temporally and spatially controlled manipulation of multiple target genes using a dual-recombinase system or CRISPR/Cas9 gene editing. GEMMs that express fluorescent proteins allow cell lineage tracing to follow tumor growth and metastasis to understand the contribution of different cell types in cancer progression. GEMMs are widely used for therapeutic optimization. In this review, we summarize the main molecular alterations found in pancreatic neoplasms, developed GEMMs, and the contribution of GEMMs to the current understanding of PDAC pathobiology. Furthermore, we attempted to modify the categorization of altered driver genes according to the most updated findings.
format Online
Article
Text
id pubmed-8750056
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-87500562022-01-12 Genetic Mutations of Pancreatic Cancer and Genetically Engineered Mouse Models Saiki, Yuriko Jiang, Can Ohmuraya, Masaki Furukawa, Toru Cancers (Basel) Review SIMPLE SUMMARY: Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy. Recent multi-gene analysis approaches such as next-generation sequencing have provided useful information on the molecular characterization of pancreatic tumors. Different types of pancreatic cancer and precursor lesions are characterized by specific molecular alterations. Genetically engineered mouse models (GEMMs) of PDAC are useful tools to understand the roles of altered genes. Most GEMMs are driven by oncogenic Kras, and can recapitulate the histological and molecular hallmarks of human PDAC and comparable precursor lesions. In this review, we summarize the main molecular alterations found in pancreatic neoplasms and GEMMs developed based on these alterations. ABSTRACT: Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy, and the seventh leading cause of cancer-related deaths worldwide. An improved understanding of tumor biology and novel therapeutic discoveries are needed to improve overall survival. Recent multi-gene analysis approaches such as next-generation sequencing have provided useful information on the molecular characterization of pancreatic tumors. Different types of pancreatic cancer and precursor lesions are characterized by specific molecular alterations. Genetically engineered mouse models (GEMMs) of PDAC are useful to understand the roles of altered genes. Most GEMMs are driven by oncogenic Kras, and can recapitulate the histological and molecular hallmarks of human PDAC and comparable precursor lesions. Advanced GEMMs permit the temporally and spatially controlled manipulation of multiple target genes using a dual-recombinase system or CRISPR/Cas9 gene editing. GEMMs that express fluorescent proteins allow cell lineage tracing to follow tumor growth and metastasis to understand the contribution of different cell types in cancer progression. GEMMs are widely used for therapeutic optimization. In this review, we summarize the main molecular alterations found in pancreatic neoplasms, developed GEMMs, and the contribution of GEMMs to the current understanding of PDAC pathobiology. Furthermore, we attempted to modify the categorization of altered driver genes according to the most updated findings. MDPI 2021-12-24 /pmc/articles/PMC8750056/ /pubmed/35008235 http://dx.doi.org/10.3390/cancers14010071 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Review
Saiki, Yuriko
Jiang, Can
Ohmuraya, Masaki
Furukawa, Toru
Genetic Mutations of Pancreatic Cancer and Genetically Engineered Mouse Models
title Genetic Mutations of Pancreatic Cancer and Genetically Engineered Mouse Models
title_full Genetic Mutations of Pancreatic Cancer and Genetically Engineered Mouse Models
title_fullStr Genetic Mutations of Pancreatic Cancer and Genetically Engineered Mouse Models
title_full_unstemmed Genetic Mutations of Pancreatic Cancer and Genetically Engineered Mouse Models
title_short Genetic Mutations of Pancreatic Cancer and Genetically Engineered Mouse Models
title_sort genetic mutations of pancreatic cancer and genetically engineered mouse models
topic Review
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8750056/
https://www.ncbi.nlm.nih.gov/pubmed/35008235
http://dx.doi.org/10.3390/cancers14010071
work_keys_str_mv AT saikiyuriko geneticmutationsofpancreaticcancerandgeneticallyengineeredmousemodels
AT jiangcan geneticmutationsofpancreaticcancerandgeneticallyengineeredmousemodels
AT ohmurayamasaki geneticmutationsofpancreaticcancerandgeneticallyengineeredmousemodels
AT furukawatoru geneticmutationsofpancreaticcancerandgeneticallyengineeredmousemodels