Cargando…
Interpretation of Frequency Channel-Based CNN on Depression Identification
Online end-to-end electroencephalogram (EEG) classification with high performance can assess the brain status of patients with Major Depression Disabled (MDD) and track their development status in time with minimizing the risk of falling into danger and suicide. However, it remains a grand research...
Autores principales: | Ke, Hengjin, Cai, Cang, Wang, Fengqin, Hu, Fang, Tang, Jiawei, Shi, Yuxin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8750060/ https://www.ncbi.nlm.nih.gov/pubmed/35027888 http://dx.doi.org/10.3389/fncom.2021.773147 |
Ejemplares similares
-
Global Epileptic Seizure Identification With Affinity Propagation Clustering Partition Mutual Information Using Cross-Layer Fully Connected Neural Network
por: Wang, Fengqin, et al.
Publicado: (2018) -
Side-Scan Sonar Image Segmentation Based on Multi-Channel CNN for AUV Navigation
por: Yang, Dianyu, et al.
Publicado: (2022) -
Interpretation of Electrocardiogram Heartbeat by CNN and GRU
por: Yao, Guoliang, et al.
Publicado: (2021) -
Epileptic Seizure Detection Based on EEG Signals and CNN
por: Zhou, Mengni, et al.
Publicado: (2018) -
EEG-based analysis for pilots’ at-risk cognitive competency identification using RF-CNN algorithm
por: Jiang, Shaoqi, et al.
Publicado: (2023)