Cargando…

Analysis of the Single-Cell Heterogeneity of Adenocarcinoma Cell Lines and the Investigation of Intratumor Heterogeneity Reveals the Expression of Transmembrane Protein 45A (TMEM45A) in Lung Adenocarcinoma Cancer Patients

SIMPLE SUMMARY: Non-small cell lung cancer (NSCLC) is one of the main causes of cancer-related deaths worldwide. Intratumoral heterogeneity (ITH) is responsible for the majority of difficulties encountered in the treatment of lung-cancer patients. Therefore, the heterogeneity of NSCLC cell lines and...

Descripción completa

Detalles Bibliográficos
Autores principales: Neuperger, Patrícia, Balog, József Á., Tiszlavicz, László, Furák, József, Gémes, Nikolett, Kotogány, Edit, Szalontai, Klára, Puskás, László G., Szebeni, Gábor J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8750076/
https://www.ncbi.nlm.nih.gov/pubmed/35008313
http://dx.doi.org/10.3390/cancers14010144
Descripción
Sumario:SIMPLE SUMMARY: Non-small cell lung cancer (NSCLC) is one of the main causes of cancer-related deaths worldwide. Intratumoral heterogeneity (ITH) is responsible for the majority of difficulties encountered in the treatment of lung-cancer patients. Therefore, the heterogeneity of NSCLC cell lines and primary lung adenocarcinoma was investigated by single-cell mass cytometry (CyTOF). Human NSCLC adenocarcinoma cells A549, H1975, and H1650 were studied at single-cell resolution for the expression pattern of 13 markers: GLUT1, MCT4, CA9, TMEM45A, CD66, CD274, CD24, CD326, pan-keratin, TRA-1-60, galectin-3, galectin-1, and EGFR. The intra- and inter-cell-line heterogeneity of A549, H1975, and H1650 cells were demonstrated through hypoxic modeling. Additionally, human primary lung adenocarcinoma, and non-involved healthy lung tissue were homogenized to prepare a single-cell suspension for CyTOF analysis. The single-cell heterogeneity was confirmed using unsupervised viSNE and FlowSOM analysis. Our results also show, for the first time, that TMEM45A is expressed in lung adenocarcinoma. ABSTRACT: Intratumoral heterogeneity (ITH) is responsible for the majority of difficulties encountered in the treatment of lung-cancer patients. Therefore, the heterogeneity of NSCLC cell lines and primary lung adenocarcinoma was investigated by single-cell mass cytometry (CyTOF). First, we studied the single-cell heterogeneity of frequent NSCLC adenocarcinoma models, such as A549, H1975, and H1650. The intra- and inter-cell-line single-cell heterogeneity is represented in the expression patterns of 13 markers—namely GLUT1, MCT4, CA9, TMEM45A, CD66, CD274 (PD-L1), CD24, CD326 (EpCAM), pan-keratin, TRA-1-60, galectin-3, galectin-1, and EGFR. The qRT-PCR and CyTOF analyses revealed that a hypoxic microenvironment and altered metabolism may influence cell-line heterogeneity. Additionally, human primary lung adenocarcinoma and non-involved healthy lung tissue biopsies were homogenized to prepare a single-cell suspension for CyTOF analysis. The CyTOF showed the ITH of human primary lung adenocarcinoma for 14 markers; particularly, the higher expressions of GLUT1, MCT4, CA9, TMEM45A, and CD66 were associated with the lung-tumor tissue. Our single-cell results are the first to demonstrate TMEM45A expression in human lung adenocarcinoma, which was verified by immunohistochemistry.